Predictive Biomarkers
McShane, Birrer, Williams, Hamilton, Carbone, Barlow
Predictive Biomarkers

- **Class 1**: Patients with a positive assay result benefit from a new therapy relative to another available therapy, whereas patients with negative assay result do not benefit from the new therapy relative to other therapy (ideal class).
- **Class 2**: The assay result identifies patients for whom a given therapy has (or may have) activity.
- **Class 3**: The assay result identifies patients who are, versus who are not, likely to benefit from a wide class of treatments (e.g., adjuvant chemotherapy).
- **Class 4**: Patients with a positive assay result benefit from the new therapy relative to standard therapy.
Predictive Biomarkers

- CDRH/FDA Companion dx guidance about to be final: need to have a result in both marker + and marker - to be called *predictive*; if don’t have result in marker neg; can call *selective*

- Need to define what we are talking about.

- Clarity on the intended use of the test is crucial.

- Define that upfront in order to go on to determine what evidence is necessary.

- Context is specific in this endeavor
Clinical Utility Endpoints
All context depended (tumor type)

- Improved overall survival
- Improved progression free survival
 - Surrogate for overall survival, related to QOL
- Better patient reported outcomes
 - Decreased toxicity, QOL
- Lower resource utilization
 - Cost
- Response not likely to be valuable
Clinical Utility Endpoints
Biomarker Specific Considerations

• Additional interventions
 - Biopsy, “downstream” procedures, imaging

• Worse Quality of life
 - Hospitalization, psychological effects

• Increased Cost
 - Biopsies, molecular test
Types of needed evidence

- Anecdotal or rare dramatic responses
 - Lowest level of evidence, lots of “noise”, hypotheses generating,

- Large databases studies
 - Better level of evidence (less noise) but highly dependent on size and quality of data

- Retrospective studies
 - Would require multiple studies with careful quality control

- Prospective-retroespective studies
 - Reasonable level of evidence, certainly valuable, emphases the need to collect tumor on all patients

- Prospective clinical trials
 - Randomized trials—gold standard
 - Single arm trials possible if a large treatment effect
Assay Issues

• FDA guidelines appear sufficient
• However-need to address variability in assays after initial approval
• Need transparent process for the “local” assay performance (CLIA lab assessments should be available to the public)
• Should all assays be compared to the “gold standard” (companion diagnostic)?
Assay Issues

• FDA should require similar standards for biomarker development as for drug development. With some flexibility in regards to development timeline.

• FDA should find a way to correlate “local” assays with response to the agent in order to “validate” the assay.
What can NCI do

- Record and characterize rare responders
- Create a national database of genomic data from patients treated at institutions across the country
- Create a system which would allow patients (who otherwise could not) with specific mutations to obtain a targeted agent as long as all of the clinical data was provided into a NCI run database
- Clearing house linking genomic data to relevant clinical trials to assist the MDs
What can NCI do

- Engage other agencies to determine variability in biomarker assays (at different institutions).
- Generate performance statistics for biomarkers assays for the intended use.
- Foster collaboration among industrial partners, insurance companies and cooperative groups to conduct trials.
What can NCI do

• Should focus on studies which are critical for biomarker development and will NOT be funded by industry.

• Education of general community (physicians, patients and researchers) about biomarker validation (in “patient” terms)

• In conjunction with ASCO/professional organization