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NCI Symposium on 
Epigenetics in Development 

Natcher Auditorium, NIH, Bethesda, MD 
April 4-5, 2013 

 
Thursday, April 4, 2013 
 
7:30 a.m. Registration 
 
8:30 a.m. Welcome  

Gordon Hager, Ph.D., Chair of the CECB, National Cancer Institute 
 

SESSION 1:   CHROMATIN MODIFICATIONS I 
Chair: Dinah Singer, Ph.D., National Cancer Institute 

 
8:45 a.m. “Chromatin Assembly And Disassembly” 
   Jessica Tyler, Ph.D., University of Texas, M.D. Anderson 
 
9:15 a.m. “Manipulating Long-Range Genomic Interactions To Reprogram The Beta Globin 

Locus”  
Gerd Blobel, M.D., Ph.D., University of Pennsylvania 

 
9:45 a.m. “The 3D Genome Landscape And Long Range Control Of Gene Expression”  

Bing Ren, Ph.D., University of California-San Diego 
 
10:15 a.m. Break 
 
SESSION 2: CHROMATIN MODIFICATIONS II 

Chair: Tom Misteli, Ph.D., National Cancer Institute 
 
10:45 a.m. “Regulating mRNA Levels Globally: The Roles Of Myc And Of Promoter DNA 

Melting” 
David Levens, M.D., Ph.D., National Cancer Institute 
 

11:15 a.m. “Chromatin And Cell Fate Specifications In C. Elegans” 
Oliver Hobert, Ph.D., Columbia University 

 
11:45 a.m. “Epigenetic Regulation In The C. Elegans Germ Line” 

William Kelly, Ph.D., Emory University 
 
12:15 p.m. LUNCH BREAK AND POSTER VIEWING 
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SESSION 3:   STEM CELLS AND REPROGRAMMING 
Chair: Kathrin Muegge, M.D., National Cancer Institute 

 
2:00 p.m. “Remodeling The Epigenome Through Reprogramming” 

George Daley, M.D., Ph.D., Children’s Hospital Boston, Harvard University 
 
2:30 p.m. “Hdac6 Is A Stem Cell-Specific Modulator Of Tip60-P400 Function” 

Thomas Fazzio, Ph.D., University of Massachusetts Medical School 
 
3:00 p.m. “Function Of Histone Variant H2A.Z In ESC Self-Renewal And Differentiation” 

Keji Zhao, Ph.D., National Heart, Lung and Blood Institute 
 

3:30 p.m. Break 
 
SESSION 4:  EPIGENETICS IN DISEASE 

Chair: Paul Meltzer, M.D., Ph.D., National Cancer Institute 
 
3:50 p.m. “Epigenetic Regulation Of Aging” 

Anne Brunet, Ph.D., Stanford University 
 

4:20 p.m.  “Epigenetic Heterogeneity In Cancer” 
Bradley Bernstein, M.D., Ph.D., Massachusetts General Hospital, Harvard 
Medical School and Broad Institute 
 

4:50 p.m. “Histone Methylation In Leukemia Development And Maintenance” 
Scott Armstrong, M.D., Ph.D., Memorial Sloan-Kettering Cancer Center 

 
5:20 p.m. “DNA Methylation And The Regulation Of Normal And Malignant Hematopoiesis” 

Margaret Goodell, Ph.D., Baylor College of Medicine 
 
5:50 p.m. Adjourn  
 
 
Friday, April 5, 2013 
 
SESSION 5: TRANSCRIPTION I - MECHANISMS 

Chair: Shalini Oberdoerffer, Ph.D., National Cancer Institute 
 
8:30 a.m. “Direct Measurement Of Transcription Initiation And Elongation In Living Human 

Cells” 
Daniel Larson, Ph.D., National Cancer Institute 

 
9:00 a.m. “Mechanisms And Evolution Of Transcriptional Regulation In Mammals” 

Duncan Odom, Ph.D., Cancer Research UK, Cambridge Research Institute 
 

9:30 a.m. “Mediator And The Regulation Of RNA Polymerase II Transcription” 
Joan Conaway, Ph.D., Stowers Institute for Medical Research 

 
10:00 a.m. “Fungal Chromatin Structure And Function” 

Oliver Rando, M.D., Ph.D., University of Massachusetts Medical School 
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10:30 a.m. Break  
 
SESSION 6: TRANSCRIPTION II - CONSEQUENCES 

Chair: Mikhail Kashlev, Ph.D., National Cancer Institute 
 
11:00 a.m. “RECQL5, Suppressor Of Transcription-Associated DNA Recombination” 

Jesper Svejstrup, Ph.D., London Research Institute 
 
11:30 a.m. “Driving RNA Polymerase II Through Chromatin On The Many Roads To Splicing 

Regulation” 
Maria Carmo-Fonseca, M.D., Ph.D., Institute of Molecular Medicine, University 
of Lisbon 

 
12:00 p.m. “Epigenetic Regulation Of Alternative Pre-mRNA Splicing” 

Shalini Oberdoerffer, Ph.D., National Cancer Institute 
 

12:30 p.m. LUNCH BREAK AND POSTER SESSION 
 
 
SESSION 7:   NON-CODING RNAS 

Chair: Susan Gottesman, Ph.D., National Cancer Institute 
  
2:00 p.m. “Noncoding Function For mRNA In Chromatin Insulator Activity” 

Elissa Lei, Ph.D., National Institute of Diabetes and Digestive and Kidney 
Diseases 

 
2:30 p.m.  “Long Noncoding RNAs In Epigenetic Regulation” 

Jeannie Lee, M.D., Ph.D., Massachusetts General Hospital, Harvard Medical 
School 

 
3:00 p.m.  “RNA-Mediated Transcriptional Silencing In Plants” 

Craig Pikaard, Ph.D., Indiana University 
 

3:30 p.m.  “Epigenetic Genome Control By RNAi And Heterochromatin Machinery” 
Shiv Grewal, Ph.D., National Cancer Institute 

 
4:00 p.m.  “Multi-Generational Epigenetic Inheritance And Germline Immortality” 

Scott Kennedy, Ph.D., University of Wisconsin-Madison 
 
4:30 p.m. Adjourn 
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P-1 
GENOME-WIDE MAPPING OF UV LESIONS REVEAL RELATIONSHIPS BETWEEN 
CHROMATIN, TRANSCRIPTION, DNA DAMAGE SUSCEPTIBILITY, AND REPAIR  
Adar, S.1, Garrison, P.1, Sancar, A.2 and Lieb, J.D.1   
1Department of Biology, Carolina Center for Genome Science, and Lineberger Comprehensive 
Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of 
Biochemistry and Biophysics, University of North Carolina School of Medicine, University of 
North Carolina at Chapel Hill, Chapel Hill, NC 
 
Chromatin has strong influence on the susceptibility of DNA to damage and the efficiency of its 
repair. The relationship between nucleosome binding, transcription and DNA damage has been 
difficult to study in living cells. The fact that all three influence each other makes the relative 
contribution of any one factor difficult to isolate. Nucleosome binding can both protect DNA 
from damage, and hinder the access of repair enzymes. Lesions in the DNA can affect 
nucleosome stability and block RNA polymerases, but at the same time, induce a transcriptional 
stress response. Finally, active transcription is associated with a more open chromatin structure, 
but is also known in itself to enhance repair. To decipher this complex network of relationships, 
we developed a genome-wide DNA-damage detection assay based on the isolation of UV-
damaged genomic DNA followed by high throughput sequencing. We employ this assay in the 
yeast S. cerevisiae. We show that UV-induced cyclobutyl pyrimidine dimers (CPDs) are 
widespread throughout the genome, are unaffected by nucleosomes, and are dictated mostly by 
the underlying DNA sequence. We follow the repair rates of these damages by two repair 
mechanisms, nucleotide excision repair (NER) and photoreactivation (PHR). As expected, our 
preliminary results show faster repair by photoreactivation, faster repair at expressed genes, and 
delayed repair at sites packaged in nucleosomes. In combination with existing high throughput 
genomic methods for nucleosome and RNA mapping, this approach will be a powerful tool to 
decipher the relationship between gene expression, chromatin structure, DNA damage formation, 
and DNA repair.   
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P-2 
DNase2TF: AN EFFICIENT ALGORITHM FOR FOOTPRINT DETECTION  
Baek, S., Sung, M. and Hager, G.L. 
Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 
 
By deep sequencing of DNase-seq data and analyzing the nucleotide-resolution DNase cleavage 
profiles, it is possible to achieve digital footprinting of transcription factors. The DNA regions 
that are bound by proteins and relatively protected from enzymatic cutting are termed footprints. 
Decreasing costs and higher yields of improved sequencing methods make digital footprinting 
more feasible, making de novo discovery of relevant transcription factors possible. However, 
reliable and fast computational methods must be widely available to enable footprint detection 
from DNase-seq data. Here we present DNase2TF, a new detection algorithm that scans DNase I 
hypersensitive sites for putative footprints. The algorithm is implemented in MATLAB and C. 
Source codes are provided as online supplementary information. When compared to previous 
methods, DNase2TF is 100 times faster and more accurate in predicting actual transcription 
factor binding sites. We also assess a limitation of using footprints for binding prediction that 
may be caused by insufficient sequencing and/or certain binding events that do not produce 
footprints. DNase2TF allows rapid identification of footprint candidates, but care should be 
taken when inferring transcription factor binding through footprints.   
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P-3 
CORE PROMOTER ELEMENTS ARE NOT ESSENTIAL FOR TRANSCRIPTION IN 
MAMMALS  
Barbash, Z.S., Weissman, J.D., Mu, J. and Singer, D.S.   
Experimental Immunology Branch, CCR, NCI, NIH, Bethesda, MD   
 
Core promoter elements are thought to be the docking site for transcription factors binding, and 
thereby essential for transcription initiation. The role of core promoter elements has been studied 
for decades in reporter systems. The central model claim that each cis sequence has an epigenetic 
role in navigating transcription initiation. We use here the MHC class I gene as model to study 
transcription in a transgenic mouse. MHC class I genes are ubiquitously expressed and subject to 
both tissue-specific and hormonal regulation. The core promoter contains four conventional 
elements: CCAAT, a TATAA-like element, an Sp1 binding site and a canonical Inr. The in vivo 
function of these elements was determined by mutating each individually within the context of 
the native gene. Surprisingly, none of the elements was essential for transcription since no single 
mutation eliminated transcription. Indeed, mutation of any one of the elements resulted in 
increased promoter activity, indicating that these elements function as transcriptional modulators. 
Further, each of the elements was found to have a distinct function, contributing uniquely to 
tissue-specificity, hormonal responses or both. The core promoter elements do not affect start 
site selection, demonstrating that they do not invoke a cryptic promoter. However, they do 
modulate relative start site usage. The patterns of chromatin modification reflect the expression 
status of the different promoters. In tissues where the different promoters constructs support 
active transcription, histone H3K4 trimethylation is high and H3K9 trimethylation is low. 
Conversely, H3K9 trimethylation is high and H3K4 trimethylation low across the gene in tissues 
where the promoter constructs are less active. The wild type promoter is activated by interferon, 
while the Inr and Sp1 mutants repress transcription in response to interferon treatment. Finally, 
the CAAT element was found to have dual function, both as a transcriptional regulator and as a 
barrier element. The barrier function correlated with the binding of C/EBP, CTCF and Cohesin 
to the wild type but not CAAT element, In addition to variegated expression across generations 
when the CAAT element was mutated. 3C analysis revealed that the CAAT expression pattern is 
affected by chromosome conformation along the PD1 gene. Remarkably, these results 
demonstrate that none of the elements homologous to canonical core promoter elements are 
necessary for promoter activity. However, they do contribute to the fine-tuning of the tissue 
specific patterns of expression, extracellular signaling, overall promoter activity and chromatin 
modifications   
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P-4 
IDENTIFICATION OF EARLY REPLICATING FRAGILE SITES REVEALS A NOVEL 
SOURCE OF DNA REARRANGEMENT LEADING TO B CELL LYMPHOMAS 
Barlow, J.H.1, Faryabi, R.B.1, Callen, E.1, Wong, N.1, Malhowski, A.1, Chen, H.T.1, Gutierrez-
Cruz, G.2, McKinnon, P.3, Wright, G.4, Robbiani, D.5, Staudt, L.4, Fernandez-Capetillo, O.6 and 
Nussenzweig, A.1   
1Laboratory of Genome Integrity, CCR, NCI, NIH, Bethesda, MD; 2Laboratory of Muscle Cells 
and Gene Regulation, NIAMS, NIH, Bethesda, MD; 3Department of Genetics, St. Jude 
Children's Research Hospital, Memphis, TN; 4Metabolism Branch, CCR, NCI, NIH, Bethesda, 
MD; 5Laboratory of Molecular Immunology, Rockefeller University, NY, NY; 6Genomic 
Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain   
 
DNA double strand breaks (DSBs) in B lymphocytes are thought to arise stochastically during 
replication or as a result of targeted DNA damage by activation induced cytidine deaminase 
(AID) in G1. Lymphocytes are susceptible to replication-stress-inducing agents such as 
hydroxyurea (HU) since they undergo several bursts of replications during their development. 
Using genome-wide profiling of DNA repair proteins RPA, SMC5, γ-H2AX, and BRCA1 in 
primary murine lymphocytes treated with HU, we identify a novel class of recurrent DNA 
lesions at early replicating sites, termed Early Replication Fragile Sites (ERFS). ERFS regions 
are enriched for repetitive DNA elements, including LINE and SINE DNA, and occur at 
transcriptionally active, gene-rich 'open' chromatin regions. Both HU treatment and inhibition of 
the major S phase checkpoint kinase ATR induce DNA damage at ERFS, while treatment with 
low doses of the polymerase inhibitor aphidicolin does not, indicating that ERFS fragility is 
distinct from common fragile sites (CFS). Interestingly, the IKZF1, BACH2, and BCL2 genes 
are among the strongest ERFS hits, and are frequently rearranged in B cell lymphoma. 
Moreover, ERFS can translocate to AID-induced breaks at the Immunoglobulin Heavy chain 
gene (IgH). Moreover, greater than 50% of common amplifications/deletions observed in human 
diffuse large B cell lymphoma map to ERFS. We propose that replication damage occurring at 
ERFS early in S phase generates genome rearrangements affecting lymphoma progression.   
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DISTINCT RECURRENT DNA METHYLATION ABERRATIONS IN INDUCED 
PLURIPOTENT STEM CELLS MADE WITH DIFFERENT REPROGRAMMING 
FACTORS 
Batada, N.1, Ji, J.1, Sharma, V.1 and De Carvalho, D.2   
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Institute, Princess Margaret Hospital, Toronto, Ontario   
 
The dedifferentiation of somatic cells into induced pluripotent stem (iPS) cells due to expression 
of reprogramming factors results in a genome-wide change in DNA methylation. Methylation at 
a significant proportion of CpG sites in iPS cells differs from that of embryonic stem (ES) cells. 
Failure to erase parental DNA methylation has been shown to influence differentiation 
propensity of iPS. In addition, time in culture is know to influence the methylome of iPS cells, 
with extended culture increases resemblance of iPS epigenetic state to that of ES cells. Here, we 
isolated the tissue of origin and time in culture to determine the extent to which the DNA 
methylation aberrations in iPS cells depend on the reprogramming factors used. We used 
Illumina HumanMethylation450 platform to assess DNA methylation levels in 15 iPS cell lines 
made from a common fibroblasts cell source with either the Yamanaka factors (OCT4, SOX2, 
KLF4 and MYC) or the Thomson factors (OCT4, SOX2, NANOG and LIN28) and cultured for 
the same amount of time. This specific experimental setting allowed us to identify 
reprogramming factors-independent differences between iPS cells and ES cells. Strikingly, it 
also allowed us to identify reprogramming factors-dependent differences. The pattern of 
aberrations revealed that reprogramming with Yamanaka factors mainly resulted in DNA 
demethylation failure while reprogramming with Thompson factors mainly resulted in DNA 
methylation failure. Aberrantly methylated genes in Yamanaka iPS were enriched for NANOG 
targets while the aberrantly methylated genes in Thompson iPS were depleted for OCT4 targets. 
Despite the presence of c-Myc, aberrantly methylated genes in Yamanaka iPS were not 
differentially methylated in cancer, while spuriously methylated genes in Thompson iPS were 
also spuriously methylated in cancer cells. Our study reveals that the choice of reprogramming 
factors influences the extent of DNA methylation aberrations in iPS cells and should be taken 
into consideration in disease modeling and regenerative medicine.   
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Pc2, THE POLYCOMB GROUP PROTEIN RECRUITS THE c-Myb TRANSCRIPTION 
FACTOR INTO POLYCOMB BODIES AND INHIBITS ITS ACTIVITY 
Bies, J., Markus, J., Sramko, M. and Wolff, L.   
Laboratory of Cellular Oncology, CCR, NCI, NIH, Bethesda, MD  
 
The transcription factor c-Myb plays a critical role in development of virtually every lineage in 
the hematopoietic system by direct regulation of genes controlling cell cycle, lineage 
commitment during cellular differentiation, and apoptosis. Essential role for c-Myb in definitive 
hematopoiesis was convincingly showed in mouse embryos with homozygous disruption of the 
c-myb gene where mice lacking functional c-Myb died around day 15 in utero due to severe 
anemia. More recently it was shown that even modulation of c-Myb expression levels and/or its 
activity in mice has a strong impact on the proper balance of hematopoietic cell production and 
differentiation. Therefore, strict regulation of c-Myb activity is crucial for balanced production of 
hematopoietic cells. Dynamic post-translational modifications of c-Myb, such as 
phosphorylation, acetylation, ubiquitinylation, and SUMOylation, play an important role in 
modulation of its activity. Conjugation of the SUMO proteins dramatically decreases the 
transactivation capacity and the proteolytic turnover of c-Myb. The importance of this 
modification is underscored by the fact that SUMOylated lysines are located in the conserved 
region of the negative regulatory domain frequently lost during oncogenic activation of c-Myb 
protein. Two c-Myb-specific SUMO-1 E3 ligases PIASy and TRAF7 were identified recently. 
PIASy enhances SUMOylation of c-Myb in the nucleus, while TRAF7 sequesters and 
SUMOylates c-Myb in the cytosol. Interestingly, homozygous deletion of Piasy in mice did not 
affect the SUMOylation of nuclear c-Myb fraction, suggesting the existence of an additional c-
Myb-specific nuclear SUMO-E3 ligase. Here we demonstrate that the Polycomb group protein 
Pc2 is a novel interaction partner for c-Myb. Pc2, which has been shown to have a SUMO E3-
ligase activity for the co-repressors CtBP and CtBP2, increases conjugation of SUMO-1 to 
Lys499 and Lys523 located in NRD of c-Myb. Co-expression of Pc2 also has a strong negative 
effect on the c-Myb-induced reporter gene activation. Interestingly, we detect a similar inhibition 
of transactivation activities of the wild type (cMybwt) and the SUMOylation-deficient 
(cMyb2KR) mutant of c-Myb. Thus, covalent conjugation of the SUMO-1 protein to the 
negative regulatory domain of c-Myb is not a prerequisite for down-regulation of c-Myb activity 
by Pc2. Fluorescent confocal laser microscopy showed that Pc2 recruits the c-Myb transcription 
factor into specific subnuclear speckles called Polycomb bodies, where it co-localizes with an 
another member of the PRC1 repressive complex, the Bmi-1 protein. The localization in these 
Polycomb repressive structures seems to be sufficient for downregulation of the c-Myb activity 
exerted by Pc2, since both, the wild-type c-Myb and the SUMOylation-deficient mutant, are very 
effectively recruited by Pc2. In conclusion, we have identified Pc2 as a novel interaction partner 
of c-Myb that suppresses the c-Myb’s transcriptional activity not only through increased 
SUMOylation of its NRD, but also through sequestration of this oncoprotein into specific sub-
nuclear Polycomb repressive structures.   
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PHOSPHORYLATION OF CENTROMERIC HISTONE H3 VARIANT REGULATES 
CHROMOSOME SEGREGATION IN S. CEREVISIAE 
Boeckmann, L. 1*, Takahashi, Y.1*, Au, W.C.1*, Mishra, P.K.1, Choy, J.S.1, Dawson, A.R.1, 
Szeto, M.Y.1, Waybright, T.J.2, Heger, C.3, McAndrew, C.3, Goldsmith, P.K.3, Veenstra, T.D.2, 
Baker, R.E.4 and Basrai, M.A.1   
1Genetics Branch, CCR, NCI, NIH, Bethesda, MD; 2Laboratory of Proteomics and Analytical 
Technologies, Advanced Technology Program, SAIC-Frederick, Frederick National Laboratory 
for Cancer Research, NIH, Frederick, MD; 3Antibody and Protein Purification Unit, NCI, NIH, 
Bethesda, MD; 4Department of Microbiology and Physiological Systems, University of 
Massachusetts Medical School, Worcester, MA; *These authors contributed equally to this 
work.   
 
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in 
eukaryotes. In this study, we have identified post-translational modifications of S. cerevisiae 
CenH3, Cse4. Using a phosphoserine-specific antibody we showed that the association of 
phosphorylated Cse4 with centromeres is increased in response to defective microtubule 
attachment or reduced tension. ChIP analysis revealed that evolutionarily conserved Ipl1/Aurora 
B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 were reduced at 
centromeres in an ipl1 strain in vivo. This phosphorylation of Cse4 by Ipl1 was confirmed by in 
vitro assays. To elucidate the function of Cse4 phosphorylation we generated mutants to mimic 
the non-phosphorylated or phosphorylated state of Cse4, respectively. Analysis of these mutants 
revealed that a phosphomimetic cse4-4SD mutation suppresses phenotypes of ipl1-2 and Ipl1 
substrate mutants dam1 spc34 and ndc80 that are defective for chromosome bi-orientation. Cell 
biology approaches using a GFP labeled chromosome showed that cse4-4SD suppresses the 
chromosome segregation defects in dam1 spc34 strains. Further we observed reduced growth and 
enhanced chromosome segregation defects in cse4 phosphorylation mutants when combined with 
kinetochore COMA-complex mutants okp1 and ame1. Based on these results we propose that 
phosphorylation of Cse4 may destabilizes defective kinetochores to promote bi-orientation to 
ensure faithful chromosome segregation.   
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TARGETING THE CHD1 CHROMATIN REMODELER TO HISTONES RATHER 
THAN EXTRANUCLEOSOMAL DNA CONFERS SWI/SNF-LIKE 
CHARACTERISTICS 
Bowman, G.D.1, Patel, A.1, Chakravarthy, S.2, Morrone, S.3, Nodelman, I.M.1 and McKnight, 
J.N.4   
1T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD; 
2IIT/BioCAT, Sector 18, Lemont, IL; 3Department of Biophysics and Biophysical Chemistry, 
Johns Hopkins University School of Medicine, Baltimore, MD; 4Basic Sciences Division, Fred 
Hutchinson Cancer Research Center, Seattle, WA  
 
Nucleosome organization plays a fundamental role in all aspects of DNA metabolism and gene 
expression in eukaryotes, yet the mechanisms by which particular arrangements of nucleosomes 
are achieved is unclear. Here we show that the direction and outcome of nucleosome sliding by 
the Chd1 chromatin remodeler change dramatically depending on how it is targeted to 
nucleosomes. Using a Chd1-streptavidin fusion remodeler, we found that targeting via 
biotinylated DNA resulted in directional sliding toward the recruitment site, whereas targeting 
via biotinylated histones produced a distribution of nucleosome positions. Remarkably, the 
fusion remodeler shifted nucleosomes with biotinylated histones up to 50 bp off the ends of 
DNA and was capable of disrupting nucleosome wrapping within nucleosome arrays, similar to 
remodeling characteristics observed for SWI/SNF-type remodelers. These data suggest that 
forming a stable attachment to nucleosomes via histones, and thus lacking sensitivity to 
extranucleosomal DNA, appears to be sufficient for allowing a chromatin remodeler to possess 
SWI/SNF-like disruptive properties.   
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EPIGENOMIC PLASTICITY ENABLES HUMAN PANCREATIC Α- TO Β-CELL 
REPROGRAMMING  
Bramswig, N.C.1, Everett, L.J.1, Schug, J.1, Dorrell, C.3, Liu, C.2, Luo, Y.2, Streeter, P.R.3, Naji, 
A.2, Grompe, M.3 and Kaestner, K.H.1   
1Department of Genetics, University of Pennsylvania, Perelman School of Medicine, 
Philadelphia, PA; 2Department of Surgery, University of Pennsylvania, Perelman School of 
Medicine, Philadelphia, PA; 3Oregon Health and Science University, Portland, OR  
 
Insulin-secreting β-cells and glucagon-secreting α-cells maintain physiological blood glucose 
levels, and their malfunction drives diabetes development. Precise profiling of the epigenomic 
and transcriptional landscape of human pancreatic cells will yield to important insights of cell-
type specific epigenomic landscapes. Human pancreatic islets were dispersed, stained, and 
subjected to FACS analysis to obtain cell populations highly enriched for α-, β-, and exocrine 
cells. Using chromatin-immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq analysis, we 
determined the H3K4me3 and H3K27me3 profiles and the transcriptional landscape of human 
pancreatic α-, β-, and exocrine cells. We found that compared to exocrine and β-cells, 
differentiated α-cells exhibited many more genes bivalently marked by the activating H3K4me3 
and repressing H3K27me3 histone modifications. This was particularly true for β-cell signature 
genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a 
monovalent state in β-cells, carrying only the activating or repressing mark. Our epigenomic 
findings suggested that α- to β-cell reprogramming could be promoted by manipulating the 
histone methylation signature of human pancreatic islets. Indeed, we show that treatment of 
cultured pancreatic islets with a histone methyltransferase inhibitor lead to co-localization of 
both glucagon and insulin, and glucagon and insulin promoter factor 1 (PDX1) in human islets. 
Thus, human pancreatic islet cells display cell-type-specific epigenomic plasticity, suggesting 
that epigenomic manipulation could provide a path to cell reprogramming and novel cell 
replacement-based therapies for diabetes.   
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THAILANSTATINS: NEW PRE-mRNA SPLICING INHIBITORS AND POTENT 
ANTIPROLIFERATIVE AGENTS DISCOVERED FROM BURKHOLDERIA 
THAILANDENSIS MSMB43  
Cheng, Y-Q.1,2, Liu, X.1,2, Biswa, S.1, Berg, M.G.3, Antapli, C.M.1 and Dreyfuss, G.3   
1Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI; 
2Department of Pharmaceutical Sciences, University of North Texas System, College of 
Pharmacy, Fort Worth, TX; 3Howard Hughes Medical Institute, Department of Biochemistry and 
Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA  
 
More than 90% of human genes undergo alternative slicing, which results in protein variants far 
greater than the number of the encoding genes. While this processing inherently provides for 
transcriptome diversity, aberrant alternative splicing has been implicated in numerous diseases 
conditions such as cancer and neurodegeneration. The cellular machinery of alternative splicing 
has thus become a valid drug target, and dozens of small molecule effectors interrogating the 
alternative splicing process have been identified and evaluated as drug candidates. The aim of 
our research is to discover new natural products from rare bacterial species that target eukaryotic 
epigenetics and gene transcriptional regulation including alternative splicing. Mining the genome 
sequence of Burkholderia thailandensis MSMB43 revealed a cryptic biosynthetic gene cluster 
highly resembling that of FR901464, a prototype pre-mRNA splicing inhibitor produced by 
Pseudomonas sp. No. 2663. Transcriptioal analysis identified a cultivation condition in which a 
key gene of the cryptic gene cluster is adequately expressed. Consequently, three new 
compounds, named thailanstatins A, B and C, have been isolated from the fermentation broth of 
B. thailandensis MSMB43 through natural product chemistry. Thailanstatins belong to the 
FR901464-family of microbial products biosynthesized by a hybrid polyketide synthease-
nonribosomal peptide synthetase pathway. They have an overall structural similarity with 
FR901464, but differ by lacking an unstable hydroxyl group and by having a carboxyl moiety 
which together endow the compouds with a significantly greater stability than FR901464 under 
physiologically relevant conditions. In vitro assays showed that thailanstatins inhibit pre-mRNA 
splicing as potently as FR901464, with half-maximal inhibitory concentrations in the single to 
sub µM range, causing pre-mRNA to accumulate and preventing the production of mRNA and 
splicing intermediates. In vitro cell culture assays indicated that thailanstatins also possess potent 
antiproliferative activities in representative human cancer cell lines, with half-maximal growth 
inhibitory concentrations in the single nM range. This work provides new chemical entities as 
reagents for research and as drug candidates for development, and validates the Burkholderia 
species as an exciting new source of bioactive natural products.   
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IN VIVO TRANSCRIPTION AND SPLICING KINETICS REVEALED BY 
FLUCTUATION ANALYSIS OF SINGLE-RNA MEASUREMENTS IN LIVING 
HUMAN CELLS 
Coulon, A.1, Ferguson, M.L.2, Palangat, M.2, De Turris, V.3, Singer, R.H.4, Chow, C.C.1 and 
Larson, D.R.2   
1Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD; 2Laboratory of Receptor 
Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD; 3Institute of Molecular Biology 
and Pathology, University of Rome, Rome, Italy; 4Albert Einstein College of Medicine, Bronx, 
NY  
 
Eukaryotic transcription involves the coordination of many multi-subunit complexes, including 
the pre-initiation complex, the polymerase, the spliceosome and elongation and termination 
factors. Most knowledge in the field is inferred from ensemble and/or in vitro assays, giving a 
detailed but static picture. How these macromolecular machines coordinate in vivo remains 
unknown. Recently, we were able to observe transcription in live yeast cells by monitoring 
fluorescently-tagged nascent transcripts [Larson et al. 2011, Science, 322:475]. Here, we extend 
this method to a dual-color system in human cells, allowing one for the first time to resolve the 
kinetics of initiation, elongation, splicing and termination at the same gene in a living human 
cell. Using the orthogonal RNA-binding MS2 and PP7 bacteriophage coat proteins, we 
fluorescently labeled the largest intron and the 3’UTR of a stably integrated reporter gene. 
Fluorescence fluctuations recorded simultaneously in both channels at the transcription site 
reflect the initiation of pre-mRNA synthesis, the elongation kinetics of the polymerase, and the 
kinetics of intron and transcript release. We developed an approach based on cross-correlation to 
reveal the relative timing of these events for single transcripts. To that end, we derived a 
mathematical model that predicts the correlation functions depending on the timing of the 
underlying processes, allowing us to test hypotheses about polymerase progression and pausing 
at the single-molecule level in vivo. We observe an elongation speed of 1.5 kb/min, which is 
measured independently of initiation and termination. No pausing was detected in the body of 
the gene, but termination took an average of ~200 sec, during which co-transcriptional splicing 
was observed for a fraction of transcripts. These results raise the possibility that co-
transcriptional RNA processing may result in a kinetic checkpoint at termination rather than 
pauses during elongation.   
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DISTINCT NUCLEOSOME ORGANIZATION AROUND P53 RESPONSE ELEMENTS 
ASSOCIATED WITH CELL CYCLE ARREST AND APOPTOSIS 
Cui, F.1 and Zhurkin, V.B.2   
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DNA is severely deformed in the complexes with p53 tetramer as revealed by crystal structures. 
The deformations occur not only at the CWWG motif in a p53 half site, but also in the central 
region of a full site. The overall curvature of p53-bound DNA resembles that found in 
nucleosomal DNA, suggesting that p53 may recognize its cognate sites in nucleosomes. Two 
recent papers established unambiguously that p53 is a nucleosome-binding protein. That is, the 
site in a nucleosome is accessible if it is bent in the direction similar to that found in the p53-
DNA co-crystals; the site becomes inaccessible if the orientation is changed by ~180°C. This 
implies that the rotational positioning of a p53 site is critical for its accessibility, which may have 
direct impact on how p53 selectively activates its target genes in the chromatin context. We 
illustrate the functional importance of these findings by comparing the p53 sites associated with 
cell cycle arrest (CCA-sites) with those associated with apoptosis (Apo-sites), the two extreme 
cellular outcomes after p53 activation. To elucidate the rotational setting of p53 sites in 
nucleosomal DNA, we developed computational approaches based on well-established DNA 
sequence patterns related to nucleosome positioning. Unexpectedly, we found that the CCA-sites 
are oriented in such a way that they tend to be ‘open’ and ‘exposed’ on the nucleosomal surface. 
This predication is corroborated by just-published human nucleosomes mapped in high 
resolution. The nucleosome dyad positions are out of phase with the CCA-sites, at positions 4, 
17, 34/35, 55/57, 65 and 73 from the sites, resembling the score profile we obtained. 
Interestingly, the CCA-sites reside in genomic regions with high nucleosome occupancy, 
indicating that the nucleosomes embedding CCA-sites are well positioned. Together, our data 
suggest that the CCA-sites are in a correct rotational setting, presenting themselves to p53, 
facilitating p53 recognition and subsequent gene induction. This assessment is consistent with in 
vivo data for the CCA-sites such as p21 5’ RE. By contrast, our results show that Apo-sites, on 
average, have different rotational setting from the CCA-sites, consistent with the high-resolution 
human nucleosomes data. It suggests that the Apo-sites in general are likely to be ‘closed’ in the 
chromatin context. This prevents p53 binding and may require factors like chromatin remodeling 
complexes to expose the sites, which may be related to the ‘delayed’ kinetics of induction of 
apoptotic genes in vivo. In our opinion, the distinct nucleosome organization around the CCA- 
and Apo-sites is related to the difference in pyrimidine-purine (YR) dinucleotides in the central 
region of the sites. Unlike YCGR in the center of Apo-site, flexible YCAR is predominant in the 
center of the CCA-sites. These YCAR tetramers tend to bend into minor groove with large 
changes in Twist and Slide, forming so-called ‘Kink-and-Slide’ deformations critical for 
nucleosome positioning. These structural interpretations, if true, can explain why the CCA-sites 
are likely to occur in the regions with high nucleosome occupancy and why they are ‘exposed’ 
on the nucleosomes.   
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POLYCOMB DETERMINES RESPONSES TO SMAD2/3 SIGNALING IN STEM CELL 
DIFFERENTIATION AND IN REPROGRAMMING 
Dahle, O. and Kuehn, M.   
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A central goal of developmental biology is to understand the remarkable ability of cells to 
balance robustness to maintain their identity with the plasticity to change upon specific 
developmental cues. Changing cellular identities requires signaling pathways to regulate 
expression of specific genes and epigenetic factors to stabilize the new expression patterns. So 
clearly, understanding how robustness and plasticity is balanced during development requires 
identification of the connections between signaling and epigenetics. We have recently discovered 
a mechanism that integrates the developmental signaling pathway Nodal-Smad2/3 and the 
epigenetic regulator Polycomb. In this mechanism, Nodal activated Smad2/3 was found to 
counteract Polycomb repression of specific target genes by recruiting the de-methylase Jmjd3 to 
remove the histone methylation mark H3K27me3, which is essential for Polycomb’s function. 
Polycomb plays an essential role in both controlling dynamic gene expression changes during 
early development and in maintaining identity of robust cell types. We therefore decided to 
investigate if Polycomb determines the distinct responses to Smad2/3 signaling in robust versus 
dynamic cell states. Indeed, we found that Smad2/3 signaling maintained expression of the 
central pluripotency gene Oct4 during initiation of stem cell differentiation, but not in the robust 
ground state stem cells. This cell type specific role of Smad2/3 was dependent on Polycomb 
because in Polycomb deficient stem cells, Oct4 expression was signaling independent during 
differentiation. We noted that this context dependent role of Smad2/3 in controlling Oct4 
expression might explain why Smad2/3 inhibition does not reduce, but in fact enhance the 
efficiency of reprogramming fibroblasts to induced pluripotent cells (iPS cells), since the robust 
stem cells does not need Smad2/3 for Oct4 expression. We found that this enhancement by 
Smad2/3 inhibition was abolished by shRNA-knockdown of Polycomb or Jmjd3, so 
reprogramming related responses to Smad2/3 depended on Polycomb as well. These data implied 
that Polycomb determines the responses to Smad2/3 signaling when cells undergo dynamic 
changes in stem cell differentiation or in reprogramming to induced pluripotency, but not in the 
robust terminally differentiated fibroblasts or ground state stem cells. So the Smad2/3-Polycomb 
interplay is one mechanism by which the cells can balance robustness and plasticity.   
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TRANSDIFFERENTIATION FACTORS ARE DIFFERENTIALLY POLYCOMB 
REPRESSED 
Davis, F.P. and Eddy, S.R.   
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Polycomb group (PcG) proteins play a critical role in establishing and maintaining the identity of 
differentiated cells by repressing the expression of genes that regulate alternate cell fates 
(Holmberg and Perlmann, 2012). We recently observed that several transcription factors (TFs) 
regulating the identity of Kenyon cell neurons in the adult Drosophila brain are expressed in 
these cells and are PcG-repressed in another neuronal population, the octopaminergic neurons 
(Henry et al., 2012). Based on our and others' findings, we hypothesized that TFs important for 
cell identity can be identified in pairwise comparisons of two cell types as being more highly 
expressed in one cell type and more strongly H3K27me3 modified in another cell type. 
Repressing these key TFs in other cell types is critical, because ectopic expression of TFs that 
regulate cell identity has the potential to convert, or "transdifferentiate", adult cells of one type to 
another (Vierbuchen and Wernig 2011). Recent reports describe small sets of TFs that can, 
typically at low efficiency, transdifferentiate one adult cell type (the "source" cell type) to 
another ("target" cell type) by reprogramming the nucleus to express gene batteries characteristic 
of the target cell type. These factors have been discovered empirically by testing pools of factors 
(known to play a role in the maintenance or development of the target cell type) for the smallest 
combination (typically 3-4 factors) that induces transdifferentiation. Here we explore whether 
comparison of gene expression and PcG repression profiles between a pair of source and target 
cell types can help identify TFs that can convert one to the other. We show by reanalysis of 
published datasets that most transdifferentiation factors exhibit the same genomic signature we 
previously observed for regulators of Drosophila neuronal identity -- higher expression in one 
cell type and stronger PcG repression in another -- whereas this is not true for transcription 
factors in general. Furthermore, we find that the combined criteria of (i) greater H3K27me3 
modification in the source cell and (ii) higher expression in the target cell is an effective genome-
wide screen that significantly enriches for transdifferentiation factors. This finding suggests that 
candidate transdifferentiation factors can be identified using genome-wide expression and 
chromatin profiles and without prior knowledge of their functional or developmental role. Our 
results suggest that barriers between adult cell types, as depicted in Waddington's "epigenetic 
landscape" (Waddington, 1957), consist in part of differentially Polycomb-repressed 
transcription factors that can be identified by standard genomic methods. This genomic model of 
cell identity helps rationalize a growing number of transdifferentiation protocols and may help 
facilitate the engineering of cell identity for regenerative medicine. Henry GL, Davis FP, Picard 
S, Eddy SR. Nucleic Acids Res 2012. doi:10.1093/nar/gks671 Holmberg J, Perlmann T. Nat Rev 
Genet 2012. doi:10.1038/nrg3209 Vierbuchen T, Wernig M. Nat Biotechnol 2011. 
doi:10.1038/nbt.1946 Waddington CH. The Strategy of the Genes. George Allen & Unwin. 
1957.   
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Interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell 
(ESC) self-renewal and differentiation. However, it remains unknown how and where theses 
complexes are targeted to specific gene loci to specify lineage-specific transcription patterns. 
Here, we report that the cooperation of hSET1 and USF1 governs the activation of hematopoietic 
associated genes and facilitates ESCs hematopoietic fate. Knockdown of hSET1 or inhibition of 
USF DNA binding specifically suppresses mesoderm differentiation and blocks differentiation of 
hematopoietic stem and progenitor cells (HS/PCs). Although hSET1 depletion or inhibition of 
USFs has minimal effects on ESC self-renewal, KD led to a block in HS/PC differentiation by 
decreased H3K4me3 levels and transcription preinitiation complex formation at the 
hematopoietic associated genes, for example HoxB4 and TAL1. Transcription factor USF1 
maintains the hematopoietic potentials by mediating H3K4me3 modifications at HSC-associated 
bivalent genes in ES cells. Further, enforced expression of USF1 in ESCs promotes mesoderm 
differentiation and enforces the endothelial-to-hematopoietic transition by inducing 
hematopoietic-associated transcription factors, HoxB4 and TAL1. Thus, our data reveal that the 
guided-recruitment of hSET1 and its H3K4 methylations by DNA-binding factor USF1 are 
essential for establishing and maintaining the hematopoietic transcription patterns.   
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Chromatin structure plays a key role in regulating gene expression and modulating embryonic 
stem cell differentiation; however the factors that determine the organization of chromatin 
around regulatory sites are not fully known. We find that HMGN1, a nucleosome binding protein 
ubiquitously expressed in vertebrate cells, preferentially binds to CpG island-containing 
promoters, and affects the organization of nucleosomes, DNaseI hypersensitivity, and the 
transcriptional profile of mouse embryonic stem cells and neural progenitors. Loss of HMGN1 
alters the organization of an unstable nucleosome at transcription start sites, reduces the number 
of DNaseI hypersensitive sites genome wide, and decreases the number of Nestin-positive neural 
progenitors in the SVZ region of mouse brain. Thus, architectural chromatin binding proteins 
affect the transcription profile and chromatin structure during embryonic stem cell 
differentiation.   
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P-17 
THE IMPRINTED KCNQ1OT1 NON-CODING RNA HAS DIRECTIONAL SILENCING 
ACTIVITY 
Engel, N. and Korostowski, L.   
Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, PA   
 
Although the existence genomic imprinting has been known for decades, the phenomenon of 
tissue-specific imprinting or loss-of-imprinting has been underappreciated and remains 
unaccounted for. The Kcnq1 imprinted domain is highly conserved between human and mouse, 
and exhibits complex tissue-specific expression patterns co-existing with a domain-wide cis-
acting control element. Imprinting defects in the region are responsible for a subset of Beckwith-
Wiedeman fetal overgrowth syndrome. Transcription of the paternally expressed antisense 90 kb 
non-coding macro-RNA, Kcnq1ot1, silences some neighboring genes in the embryo, while 
others are unaffected. Kcnq1, encoding a potassium channel protein, from which the ncRNA 
emerges in antisense direction, is monoallelic in early cardiac development but becomes biallelic 
after midgestation, apparently overcoming the repression by the ncRNA. To explore the 
mechanism of this transition, we used allele-specific assays and chromosome conformational 
studies in wild-type mice and mice with a premature termination mutation for Kcnq1ot1. We 
show that Kcnq1 imprinting in early heart is established and maintained independently of 
Kcnq1ot1 expression. Thus, in the embryo, Kcnq1ot is only required for silencing of downstream 
genes, including Cdkn1c, a cell-cycle inhibitor. In later developmental stages, however, 
Kcnq1ot1 does have a role in modulating Kcnq1 levels, since its absence leads to overexpression 
of Kcnq1, an event accompanied by an aberrant three-dimensional structure of the chromatin. 
Thus, our studies reveal a novel mechanism by which an antisense non-coding RNA affects 
transcription through regulating chromatin flexibility and access to enhancers. Our data 
underscore the value of tissue- and stage-specific studies of imprinted domains in elucidating 
how competing transcriptional mechanisms are resolved in the context of tissue-specific needs.   
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P-18  
CENP-A NUCLEOSOMES ADOPT AN UNCONVENTIONAL SHAPE  
Falk, S.J., Sekulic, N., Mani, T., Gupta, K., Van Duyne, G., Vinogradov, S. and Black, B.E.  
Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA   
 
The centromere is the locus that ensures proper segregation of chromosomes through 
generations. In all eukaryotes, except for budding yeast, centromere location is maintained by an 
epigenetic mechanism. The most attractive candidate to provide the centromere-specifying 
epigenetic mark is the histone variant centromere protein A (CENP-A) that replaces histone H3 
in centromeric nucleosomes. The (CENP-A/H4)2 heterotetramer crystal structure (Sekulic et al., 
2010, Nature 467:347-351) led to our proposal that CENP-A could distinguish centromeric 
chromatin from the rest of the chromosome via structural deviation from within the folded 
octameric core of the nucleosome. Our model is based on the intranucleosomal rigidity conferred 
by CENP-A and rotation at the CENP-A/CENP-A interface. If preserved upon nucleosome 
formation the rotation would alter the radius of curvature of nucleosomal DNA and histone 
subunit packing. However, in the subsequent crystal structure of the CENP-A nucleosome 
(Tachiwana et al., 2011, Nature 476:232-235), nucleosomal DNA curvature and histone subunit 
packing adopt the same conformation as the conventional nucleosome but the DNA termini 
unwrap 13 bp at each end of the nucleosome core particle. To investigate the conformation of 
CENP-A nucleosomes, we used intranucleosomal FRET and to examine the extent of DNA 
wrapping in solution we used micrococcal nuclease (MNase) digestion. We find CENP-A 
nucleosomes more sensitive to MNase digestion than H3-containing nucleosomes, indeed 
indicating more frequent events of DNA unwrapping. Using FRET, we find that CENP-A 
nucleosomes heavily populate an atypical conformation where the H2A/H2B dimers are 5 Å 
further apart at steady state relative to conventional nucleosomes. These data suggest that CENP-
A nucleosomes in solution exist in equilibrium between several structural conformations: one 
that is similar to conventional nucleosomes and one that is altered by rotation at the CENP-
A/CENP-A interface and/or unwrapping of the terminal DNA. To further interrogate the 
structure of CENP-A nucleosomes in solution we are also employing SAXS (small-angle X-ray 
scattering) and SANS (small-angle neutron scattering). SANS experiments exploit contrast 
variation schemes to provide information on DNA and protein subunits independently. Our 
ongoing biophysical studies promise to provide critical insight into how CENP-A nucleosomes 
distinguish centromeric chromatin in the context of mammalian chromosomes.   
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P-19 
USE OF GENOME-WIDE EPIGENOMIC DATA IN THE CURATION OF THE 
VERTEBRATE REFSEQ DATASET: CURRENT APPLICATIONS AND FUTURE 
PROSPECTS 
Farrell, C.M. and Pruitt, K.D.   
National Center for Biotechnology Information (NCBI), National Library of Medicine, NIH, 
Bethesda, MD  
 
The Reference Sequence (RefSeq) database at NCBI represents a curated set of non-redundant 
sequences, including genomic DNA, transcripts and proteins. These sequences provide a stable 
reference for genome annotation, gene identification and gene characterization, and they are 
widely used in basic, biomedical and bioinformatics research. The RefSeq collection includes 
sequences from a range of organisms, including bacteria, viruses and eukaryotes. Among the 
vertebrate RefSeq collection, curation is carried out using a combination of data submitted to 
International Nucleotide Sequence Database Consortium databases, publication data and 
bioinformatics analysis, with a curation emphasis on higher vertebrate species for which a high 
quality sequenced genome assembly exists. At present, the dataset is comprised mainly of genes 
and their products, with little or no representation of gene regulatory or other functional genomic 
regions. The represented genes, which are included in NCBI’s Gene database, can be protein-
coding, non-coding or pseudogenes (either transcribed or non-transcribed), and current curation 
attempts are largely dependent on available transcript, protein or publication evidence. Recently, 
however, the increasing availability of genome-wide epigenomic data has become a useful tool 
for certain aspects of RefSeq curation and gene determination. Due to the large volume of data 
and the readily available display of individual cell type and combined summary tracks on 
genome browsers, two major contributors of epigenomic data are primarily used in RefSeq 
curation, namely data from the NIH Roadmap Epigenomics Mapping Consortium (REMC) and 
the ENCODE (ENCyclopedia Of DNA Elements) Project. Current RefSeq applications of these 
data include the verification of promoter presence and 5' completeness of a gene or a transcript 
variant based on histone H3 tri-methylated lysine-4 (H3K4Me3) signals combined with DNase I 
hypersensitivity or other modification signals that are correlated with an active promoter, as well 
as epigenomic evidence that suggests an active gene when the gene being considered either lacks 
or has insufficient transcript support. Examples of how epigenomic data can be combined with 
other data types in the RefSeq curation process will be shown. In addition, limitations of using 
epigenomic data in RefSeq curation will be discussed, including problems with epigenomic data 
resolution, cell type specificity and the interpretation of these data for multi-copy genes. Future 
prospects of using epigenomic data to curate and annotate functional genomic regions will also 
be discussed, and advice will be sought from the chromatin research community to gauge interest 
in and applicability of such annotations.   
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A DNA METHYLATION ELEMENT RESPONSIBLE FOR TSA EFFECT ON CYCLIN 
D1 EXPRESSION  
Guo, Z., Hao, X., Tian, W. and Yang, F.   
Medical Research Center, Hebei United University, TangShan, R.P. China   
 
Cyclin D1 is a key regulator in cell cycle progression and its high expression was found in so 
many tumor cell lines. Trichostatin A (TSA) is an organic compound that serves as an antifungal 
antibiotic and mammalian histone deacetylase (HDAC) inhibitor which shows some potential as 
an anti-cancer drug. In our research, from tumor cell line, we found cyclin D1 mRNA level 
decreased under TSA treatment. By DNA methylation analysis we found a functional DNA 
methylation pattern in cyclin D1 promoter. The 15bp (GCGCGAGGGAGCGCG)long sequence 
is GC enriched and shows palindrome sequence which then we called it an element. No putative 
transcriptional factors were found to bind this element by computer searching which suggested 
that it could be a new element for gene regulation through DNA methylation. By DNA sequence 
alignment analysis, we found the 15bp sequence evolutionary conserved between human and 
macaque (Macaca mulatta). Only one bp difference between human and mouse, and it locate in 
the middle position not in the GCGC methylation site. In Gallus gallus, the element lost 
including most of first exon of CCND1. Interestingly the methylation element is half mutant (the 
second GCGC mutated to GTGT) in Monodelphis domestica. The conversion from C to T may 
express the methylated C was mutated to T which can give clue for the species evolution. The 
15bp long methylation element has two potential methylation sites. Mutation of first GCGC 
sequence can reverse the decreased promoter activity and the second GCGC methylation site has 
no effect. To veritify the methylation element, we insert only the 15bp and its mutant fragment 
into pGL3-promoter-LUC vector to investigate the effect on TSA treatment. Data showed that 
the first GCGC sequence mutation in the element can decrease the TSA effect on the reporter 
activity driven by SV40 promoter. In conclusion, we found an element which can regulate gene 
expression by DNA methylation modification, although the mechanism need further study 
including binding factors identification.   
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CONTRIBUTION OF NUCLEOSOME BINDING PREFERENCES AND CO-
OCCURRING DNA SEQUENCES TO TRANSCRIPTION FACTOR BINDING  
He, X.1, Chatterjee, R.1, John, S.2,6, Bravo, H.5, Sathyanarayana, B.3, Biddie, S.1, Fitzgerald, P.4, 
Stamatoyannopoulos, J.6, Hager, G.2 and Vinson, C.1   
1Laboratory of Metabolism; 2Laboratory of Receptor Biology and Gene Expression; 3Laboratory 
of Molecular Biology; 4Genetics Branch, CCR, NCI, NIH, Bethesda, MD; 5University of 
Maryland, College Park, MD; 6Dept. of Genome Sciences, University of Washington, Seattle, 
WA   
 
Chromatin plays a critical role in regulating transcription factors (TFs) binding to their canonical 
transcription factor binding sites (TFBS). Recent studies in vertebrates show that many TFs 
preferentially bind to genomic regions that are well bound by nucleosomes in vitro. Co-occurring 
secondary motifs sometimes correlated with functional TFBS. We used a generalized linear 
model (GLM) to evaluate how well the propensity for nucleosome binding and co-occurrence of 
a secondary motif identify which canonical motifs are bound in vivo. We used ChIP-seq data for 
three transcription factors binding to their canonical motifs: c-Jun binding the AP-1 motif 
(TGAGTCA), GR (glucocorticoid receptor) binding the GR motif (G-ACA---TGT-C), and 
Hoxa2 (homeobox a2) binding the Pbx (Pre-B-cell leukemia homeobox) motif (TGATTGAT). 
For all canonical TFBS in the mouse genome, we calculated intrinsic nucleosome occupancy 
scores (INOS) for its surrounding 150-bps DNA and examined the relationship with in vivo TF 
binding. In mouse mammary 3134 cells, c-Jun and GR proteins preferentially bound regions 
calculated to be well-bound by nucleosomes in vitro with the canonical AP-1 and GR motifs 
themselves contributing to the high INOS. Functional GR motifs are enriched for AP-1 motifs if 
they are within a nucleosome-sized 150-bp region. GR and Hoxa2 also bind motifs with low 
INOS, perhaps indicating a different mechanism of action. Our analysis quantified the 
contribution of INOS and co-occurring sequence to the identification of functional canonical 
motifs in the genome. This analysis revealed an inherent competition between some TF and 
nucleosomes for binding canonical TFBS. GR and c-Jun cooperate if they are within 150-bps. 
Binding of Hoxa2 and a fraction of GR to motifs with low INOS values suggesting they are not 
in competition with nucleosomes and may function using different mechanisms.   
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DIRECT ASSESSMENT OF TRANSCRIPTION FIDELITY BY RNA SEQUENCING 
Imashimizu, M.1, Oshima, T.2, Lubkowska, L.1, and Kashlev, M.1   
1GRCBL, CCR, NCI, Frederick, MD; 2Nara Institute of Science and Technology, Ikoma, Nara, 
Japan   
 
Cancerous and aging cells have long been thought to be impacted by transcription errors that 
cause genetic and epigenetic changes. Until now a lack of methodology for directly assessing 
such errors hindered evaluation of their impact to the cells. We report a high-resolution Illumina 
RNA-seq method that can analyze non-coded base substitutions in mRNA at 10(-4)-10(-5) per 
base frequencies in vitro and in vivo. A combination of the RNA-seq and biochemical analyses 
of the positions for the errors revealed that increased backtracking of RNA polymerase 
represents a major sequence-dependent mechanism to increase transcription fidelity. 
Backtracking decreases a chance of error propagation to the full-length transcript and provides 
an opportunity to proofread the error. This method is adoptable to a genome-wide assessment of 
transcription fidelity.   
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PAPILLOMAVIRUS GENOMES ASSOCIATE WITH THE CELLULAR PROTEIN 
BRD4 TO REPLICATE AT FRAGILE SITES IN THE HOST GENOME  
Jang, M.K., Sakakibara, N., and McBride, A.A.   
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, 
Bethesda, MD  
 
Papillomaviruses are small DNA viruses that establish a persistent infection in the epithelia of 
the host. To ensure long-term replication and maintenance of the extrachromosomal viral 
genome, the viral E2 protein tethers it to host chromatin, often in complex with the cellular 
bromodomain protein, Brd4. To determine whether the E2-Brd4 complex interacts with specific 
regions of host chromosomes, we performed ChIP-chip analysis on the entire human genome to 
detect binding targets on chromatin derived from interphase and mitotic cells. We identified 54 
large regions of chromatin (ranging in size from several hundred Kb to over 1.6Mb) that are 
highly occupied by E2 and Brd4 throughout the cell cycle. These regions have a shared signature 
of chromatin modification in that they are highly acetylated and have a distinctive pattern of 
H3K4 methylation. Combined FISH-immunofluorescence analysis demonstrated that these 
regions correspond to the E2-Brd4 foci observed by microscopy. We have named these regions 
Persistent E2 and Brd4 - Broad localized enrichments of chromatin or PEB-BLOCs. 
Papillomavirus E1 and E2 proteins form nuclear replication foci that induce a DNA damage 
response and recruit DNA repair proteins. Even E2 proteins that do not bind tightly to Brd4 will 
recruit Brd4 to the replication foci in the presence of E1. Therefore we questioned, and 
confirmed by whole genome ChIP-chip, that E1-E2-Brd4 replication foci also form at sites that 
overlap PEB-BLOCs. In addition, we show that replicating HPV genomes are recruited to PEB-
BLOCs. Further analyses showed that PEB-BLOCs overlap with many known common fragile 
sites. Notably, oncogenic HPVs are often found integrated in the vicinity of fragile sites. Similar 
to fragile sites, PEB-BLOCs frequently contain deletions and have high rates of asynchronous 
DNA replication. To confirm that PEB-BLOCs correspond to fragile sites, C33A cells (human 
cervical cells) were treated with aphidicolin and analyzed for binding of a fragile site marker 
(FANCD2) by whole genome ChIP-chip. There was a large overlap among known fragile sites, 
PEB-BLOCs, the new C33A fragile sites and HPV integration sites. Furthermore, RNA seq 
confirmed that many PEB-BLOCs contained long, transcriptionally active genes, consistent with 
the recent findings that common fragile sites occur because of a conflict between replication and 
transcription of long genes. We propose that replication of papillomavirus genomes, which 
involves hijacking the host DNA damage and repair response, occurs adjacent to highly 
susceptible fragile sites. This is highly likely to increase the chances of integration at fragile 
sites, as is found in many HPV-associated cancers.   
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FINE-SCALE MAPPING OF NUCLEOSOME ORGANIZATION IN THE C. ELEGANS 
EMBRYO 
Jeffers, T.E. and Lieb, J.D.   
Curriculum in Bioinformatics and Computational Biology, Department of Biology, Carolina 
Center for the Genome Sciences and Lineberger Comprehensive Cancer Center, University of 
North Carolina, Chapel Hill, NC 
 
DNA is wrapped ~1.7 times around a histone octamer to form the nucleosome. We are interested 
in the physical properties by which nucleosomes and higher-order chromatin structures restrict 
access to the underlying DNA sequence. We interrogated nucleosome positioning and dynamics 
by performing a micrococcal nuclease digestion timecourse to differentially liberate 
mononucleosomes from C. elegans embryo chromatin, followed by paired-end Illumina 
sequencing. This approach captures known features such as the 10-bp periodicity in nucleosome 
digestion, along with interesting phenomena such as correlations between nucleosome position 
and the propensity for digestion, and between transcriptional activity and the ease with which 
individual nucleosomes are released upon incubation with MNase. We will discuss how these 
data may be used to increase our understanding of nucleosome dynamics, nucleosome 
‘breathing’, and the kinetics of DNA sequence accessibility.   
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INTRINSIC TRANSLOCATION BARRIER AS AN INITIAL STEP IN PAUSING BY 
RNA POLYMERASE II 
Kashlev, M., Imashimizu, M., Kireeva, M.L., Lubkowska, L., Gotte, D., Parks, A.R. and 
Strathern, J.N.   
Gene Regulation and Chromosome Biology Laboratory, CCR, NCI, Frederick, MD 
 
Pausing of RNA polymerase II (RNAP II) by backtracking on DNA is a major regulatory 
mechanism in control of eukaryotic transcription. Backtracking occurs by extrusion of the 3' end 
of the RNA from the active center after bond formation and before translocation of RNAP II on 
DNA. In several documented cases, backtracking requires a special signal such as A/T-rich 
sequences forming an unstable RNA-DNA hybrid in the elongation complex. However, other 
sequence-dependent backtracking signals and conformations of RNAP II leading to backtracking 
remain unknown. Here, we demonstrate with S. cerevisiae RNAP II that a cleavage-deficient 
elongation factor TFIIS (TFIIS(AA)) enhances backtracked pauses during regular transcription. 
This is due to increased efficiency of formation of an intermediate that leads to backtracking. 
This intermediate may involve misalignment at the 3' end of the nascent RNA in the active 
center of the yeast RNAP II, and TFIIS(AA) promotes formation of this intermediate at the DNA 
sequences, presenting a high-energy barrier to translocation. We proposed a three-step 
mechanism for RNAP II pausing in which a prolonged dwell time in the pre-translocated state 
increases the likelihood of the 3' RNA end misalignment facilitating a backtrack pausing. These 
results demonstrate an important role of the intrinsic blocks to forward translocation in pausing 
by RNAP II.   
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HDAC INHIBITION DISRUPTS CELLULAR DIFFERENTIATION AND 
PATTERNING IN THE MAMMALIAN ORGAN OF CORTI 
Kelly, M.C. and Kelley, M.W.   
Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, MD 
 
The mammalian auditory sensory end organ, known as the organ of Corti, is made up of two 
general cell types, hair cells and supporting cells, which are specified and differentiate during 
embryonic development. Each of these general categories contains multiple individual cell types 
with distinct cellular morphologies that are important for function. Moreover, hair cells and 
supporting cells are patterned in a stereotyped manner along the length of the cochlea duct. 
While considerable work has been done to define the differentiation program of some of these 
cell types, little is known about how epigenetic mechanisms, such as histone modifications, 
influence important developmental events including lineage commitment, cell fate decisions, and 
changes in cellular plasticity. Using an in vitro organ culture of mouse cochleae, we applied 
broad HDAC inhibitors to attempt to manipulate histone acetylation levels and determine the 
potential role that this modification may play during cochlear development. Treatment with 
HDAC inhibitors at early developmental stages when cells are already post-mitotic, but have not 
necessarily made terminal cell fate decisions, leads to a stalling of the gradient of differentiation 
that normally occurs along the length of the duct. Treatment at later developmental stages, after 
cell fate decisions have been made and individual cells are already taking on their characteristic 
morphologies, results in a loss of characteristic mechanosensory stereociliary bundles on the 
apical surfaces of hair cells as well as changes in cell-cell contacts, leading to patterning defects 
within the organ of Corti. These preliminary results suggest that regulation of histone acetylation 
is necessary for the proper differentiation and maintenance of distinct cell type morphologies and 
cellular patterning within the organ of Corti. Future work aims to determine which specific 
HDACs mediate these effects, how their inhibition may be affecting global and gene-specific 
expression, and if other regulatory co-factors may be directing these changes in a locus-specific 
manner.   
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DNA BREAK-INDUCED CHROMATIN CONDENSATION PROMOTES BRCA1 
REPAIR FACTOR CHOICE THROUGH A NOVEL REPRESSIVE CHROMATIN 
MODULE 
Khurana, S.1, Kruhlak, M.2, Nyswaner, M.1, Ofir, H.1, Shi, L.1 and Oberdoerffer, P.1   
1LRBGE; 2EIB, CCR, NCI, NIH 
 
DNA double-strand break (DSB) repair ensures the elimination of highly cytotoxic DNA lesions 
and is orchestrated by a diverse set of DNA damage response (DDR) factors. Appropriate repair 
factor choice is a critical step in promoting efficient DSB repair. However, the basis for selective 
repair factor recruitment to DSBs is poorly understood. DDR mediators often occupy extensive 
DSB-surrounding chromatin domains, suggesting a role for chromatin structure in this process. 
Here, we show that the DSB-induced formation of a repressive chromatin environment 
differentially affects recruitment of BRCA1 and 53BP1, two repair factors central to homologous 
recombination (HR) and nonhomologous end-joining (NHEJ), respectively. Using RNA 
interference-based screening, we identified a novel repair module consisting of macro-histone 
H2A variants and the tumor suppressor RIZ1/PRDM2 (a histone H3-K9 methyltransferase), 
which is required for efficient HR and resistance to genotoxic stress. DNA damage results in 
persistent enrichment of macoH2A at DSBs, which in turn promotes the recruitment of PRDM2 
along with PRDM2-mediated dimethylation of H3-K9. As a result, the macroH2A/PRDM2 
module causes the condensation of DSB-proximal chromatin following an initial phase of 
damage-induced expansion. This process extends over several 100 kb from the DSB site and 
appears to be essential for efficient recruitment of BRCA1, but not 53BP1, consistent with 
preferential binding of BRCA1 to repressive versus active histone marks. Finally, experimentally 
induced chromatin condensation promotes the rapid loss of 53BP1 but not BRCA1 from sites of 
DNA damage. Together, these findings place DSB-induced chromatin reorganization at a central 
position in the regulation of repair factor choice with direct implications for repair outcome and, 
ultimately, genome integrity.   
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DEFICIENCY FOR KREBS CYCLE SUCCINATE DEHYDROGENASE COMPLEX 
UNDERLIES GLOBAL EPIGENOMIC DIVERGENCE IN GASTROINTESTINAL 
STROMAL TUMOR 
Killian, J.K.1, Kim, S.Y.1, Miettinen, M.1, Smith, C.1, Merino, M.1, Tsokos, M.1, Quezado, M.1, 
Smith, Jr. M.I.2, Jahromi, M.S.3, Xekouki, P4, Szarek, E.4, Walker, R.L.1, Lasota, J.1, Raffeld, 
M.1, Klotzle, B.5, Wang, Z.1, Jones, L.1, Zhu, Y.1, Wang, Y.1, Waterfall, J.J.1, O'Sullivan, M.J.6, 
Bibikova, M.5, Pacak, K.4, Stratakis, C.4, Janeway, K.A.7, Schiffman, J.D.3, Fan, J-B.5, Helman, 
L.1 and Meltzer, P.S.1   
1Genetics Branch,, CCR, NCI, Bethesda, MD; 2Suburban Hospital, Bethesda, MD; 3University of 
Utah, Salt Lake City, UT; 4Eunice Kennedy Shriver NICHD, Bethesda, MD; 5Illumina, Inc., San 
Diego, CA; 6Our Lady's Children's Hospital, Dublin, Ireland; 7Dana Farber Cancer Institute, 
Boston, MA   
 
Gastrointestinal stromal tumors (GIST) harbor driver mutations of signal transduction kinases 
such as KIT, or alternatively, manifest loss-of-function defects in the mitochondrial succinate 
dehydrogenase (SDH) complex, a component of the Krebs cycle and electron transport chain. 
We have uncovered a striking divergence between the DNA methylation profiles of SDH-
deficient GIST (N=24) versus KIT tyrosine kinase pathway mutated GIST (N=39). Infinium 
450K methylation array analysis of fixed (FFPE) tissues disclosed an order of magnitude greater 
genomic hypermethylation from gastric smooth muscle reference in SDH-deficient GIST versus 
the KIT mutant group (84.9K vs. 8.4K targets). Epigenomic divergence was further found among 
SDH-mutant paraganglioma/pheochromocytoma (N=29), a developmentally distinct SDH-
deficient tumor system. Comparison of SDH-mutant GIST with isocitrate dehydrogenase (IDH)-
mutant glioma -- another Krebs-cycle defective tumor type -- revealed comparable measures of 
global hypo- and hypermethylation. These data expose a vital connection between succinate 
metabolism and genomic DNA methylation during tumorigenesis, and generally implicate the 
mitochondrial Krebs cycle in nuclear epigenomic maintenance. This study demonstrates that 
SDH-deficiency underlies pervasive DNA hypermethylation in multiple tumor lineages, 
generally defining the Krebs cycle as mitochondrial custodian of the methylome. We propose 
that this phenomenon may result from a failure of maintenance CpG demethylation, secondary to 
inhibition of the TET2 5-methylcytosine dioxgenase demethylation pathway by inhibitory 
metabolites that accumulate in tumors with Krebs-cycle dysfunction.   
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TRANSCRIPTIONAL CHANGES LEADING TO THYROID TUMORIGENESIS 
INDUCED BY ARCHITECTURAL CHROMATIN PROTEIN HMGN4 
Kugler, J.E. and Bustin, M.   
Laboratory of Metabolism, CCR, NCI, NIH   
 
Thyroid cancer is the most common type of endocrine malignancy; however the factors 
underlying its etiology are not fully understood. Published microarray studies have suggested 
that HMGN4, a variant of the HMGN family, is highly expressed in both normal and cancerous 
thyroid tissue. HMGNs are chromatin architectural proteins that bind specifically to nucleosome 
core particles and impact epigenetic regulatory processes by altering the structure of chromatin 
and the levels of histone modifications. HMGN4 is unique because it is encoded by an intronless 
gene which originated from a retropseudogene. Quantitative PCR and western blot analyses 
verified that HMGN4 is indeed up-regulated in human thyroid cancer cells. Up-regulation of 
HMGN4 leads to increased soft-agar colony formation in both human thyroid cancer cells and 
mouse embryonic fibroblasts (MEFs); in addition, MEFs over-expressing HMGN4 formed 
significantly larger tumors than control MEFs when injected into nude mice. Comparative 
microarray analysis reveals that HMGN4 over-expression down-regulates the expression of the 
tumor suppressors BRCA2, ATM, and ATRX in both MEFs and human thyroid cancer cells. 
DnaseI digestion assays of the BRCA2, ATM, and ATRX promoter regions indicate that up-
regulation of HMGN4 alters the chromatin structure at the promoters of these genes. We suggest 
that the up-regulated expression of HMGN4 leads to cancer by inducing changes in chromatin 
structure that lead to down-regulation of tumor suppressor expression. Thus, the random 
expression of a retropseudogene may lead to increased tumorigenicity.   
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DNA METHYLATION PROFILING IN HUMAN B CELLS REVEALS IMMUNE 
REGULATORY ELEMENTS AND EPIGENETIC PLASTICITY AT ALU ELEMENTS 
DURING B CELL 
Lai, A.Y.1, Mav, D.3, Shah, R.3, Grimm, S.A.2, Phadkr, D.3, Hatzi, K.4, Melnick, A.M.4, 
Geigerman, C.5, Sobol, S.E.6, Jaye, D.L.5 and Wade, P.A.1   
1Laboratory of Molecular Carcinogenesis; 2Integrative Bioinformatics, National Institute of 
Environmental Health Sciences, Research Triangle Park, NC; 3SRA International, Inc., Durham, 
NC; 4Weill Cornell Medical College, New York, NY; 5Department of Pathology and Laboratory 
Medicine; 6Department of Otolaryngology-Head and Neck Surgery, Emory University School of 
Medicine, Atlanta, GA   
 
Memory is a hallmark of adaptive immunity, wherein lymphocytes mount a superior response to 
a previously encountered antigen. It has been speculated that epigenetic alterations in memory 
lymphocytes contribute to their functional distinction from their naive counterparts. However, 
the nature and extent of epigenetic alterations in memory compartments remain poorly 
characterized. Here we profile the DNA methylome and the transcriptome of B lymphocyte 
subsets representing stages of the humoral immune response before and after antigen exposure in 
vivo from multiple humans. A significant percentage of activation-induced losses of DNA 
methylation mapped to transcription factor binding sites. An additional class of demethylated 
loci mapped to Alu elements across the genome and accompanied repression of DNA 
methyltransferase 3A. The activation-dependent DNA methylation changes were largely retained 
in the progeny of activated B cells, generating a similar epigenetic signature in downstream 
memory B cells and plasma cells with distinct transcriptional programs. These findings provide 
insights into the methylation dynamics of the genome during cellular differentiation in an 
immune response.   
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THE CLAMP PROTEIN LINKS MSL COMPLEX TO THE X-CHROMOSOME 
DURING DROSOPHILA DOSAGE COMPENSATION 
Larschan, E.1, Soruco, M.L.1*, Chery, J.1*, Bishop, E.P.2,7, Siggers, T.3, Tostorukov, M.2,3, 
Leydon, A.R.1, Sugden, A.U.1, Goebel, K.1, Feng, J.1, Xia, P.1, Vedenko, A.3, Bulyk, M.L.3,4,5 
and Park, P.J.2,3,6   
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Providence, RI; 2Center for Biomedical Informatics, Harvard Medical School, Boston, MA; 
3Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard 
Medical School, Boston, MA; 4Department of Pathology, Brigham & Women's Hospital and 
Harvard Medical School, Boston, MA; 5Harvard-MIT Division of Health Sciences and 
Technology, Harvard Medical School, Boston, MA; 6Children's Hospital Informatics Program, 
Boston, MA; 7Bioinformatics Graduate Program, Boston University, Boston, MA; *These 
authors contributed equally to this work   
 
In heterogametic species, the process of dosage compensation is required to equalize transcript 
levels between the sex chromosomes in males and females. The Drosophila Male-Specific Lethal 
(MSL) complex increases transcript levels on the single male X-chromosome to equal the 
transcript levels in XX females. However, it is not known how the MSL complex is linked to its 
DNA recognition elements, the critical first step in dosage compensation. Here, we demonstrate 
that a previously uncharacterized zinc-finger protein, CLAMP (Chromatin-Linked Adaptor for 
MSL Proteins) functions as the key link between MSL complex and the X-chromosome. 
CLAMP directly binds to the MSL complex DNA recognition elements and is required for the 
recruitment of MSL complex. CLAMP is a non-sex specific protein that is enriched on the X- 
chromosome, even in the absence of MSL complex. Synergistic interactions between CLAMP 
and MSL complex increase X-chromosome enrichment of both factors. The discovery of 
CLAMP identifies a critical factor required for the chromosome-specific targeting of dosage 
compensation, providing new insights into how sub-nuclear domains of coordinate gene 
regulation are formed within metazoan genomes.   
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MECHANISMS CONTROLLING TRANSCRIPTION OF THE MYC ONCOGENE AND 
CELL OVERGROWTH IN DROSOPHILA VIA PSI 
Lee, J.E.A.1, Cranna, N.J.1, Mitchell, N.C.1, Nie, Z.2, Levens, D.L.3, Hannan, R.D.3 and Quinn, 
L.M.1   
1Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia; 2Peter 
MacCallum Cancer Centre, Melbourne, VIC, Australia; 3CCR, NCI, Bethesda, MD 
 
Myc proteins are critical regulators of growth and cell cycle progression during animal 
development. Dysregulation of Myc can result in over proliferation and malignant 
transformation. In addition, Myc transcription must rapidly respond to environmental cues, 
which feed into developmental signaling pathways. In vitro studies in mammals have 
demonstrated activated expression of the c-Myc oncogene in response to growth factors in serum 
is mediated by release of paused, but transcriptionally engaged, RNA Polymerase II (Pol II). 
This increase in release of MYC transcription correlates with recruitment of the single-stranded 
DNA binding protein FUBP1 to the Myc promoter (1). However, the signals promoting 
recruitment of FUBP to activated c-Myc are currently unknown. In an effort to better understand 
activation of Myc transcription in an in vivo signaling environment, we have developed models 
to study the Drosophila ortholog of FUBP1, Psi. A recent coaffinity purification (Co-IP) coupled 
to mass spectrometry for FLAG-HA epitope-tagged proteins, has led to a comprehensive 
Drosophila protein interaction map (DPiM) (3). Data mining of the DPiM revealed novel 
interactions between Psi and both core and gene-specific transcriptional machinery with ∼80% 
of the 30 strongest interactors directly implicated in RNA Pol II activity and/or chromatin 
remodeling. In particular, Psi was found in a complex with most subunits of the mediator (MED) 
complex and we are currently exploring whether these interactions are required for regulation of 
Drosophila myc, dmyc, transcription. We will present evidence that Psi is not only required for 
activated dmyc transcription, but that the ability of the Ras pathway to activate dmyc 
transcription requires Psi. Furthermore, as Mass spectrometry showed Psi in complex with an 
interconnected Pi3K/Insulin pathway, we are currently exploring whether the effects of Ras are 
dependent on interactions with the Pi3K pathway. Together the data we will present demonstrate 
that Psi may provide an important link between the Ras/Pi3K signalling pathway, dmyc 
transcription and cell growth.  
(1) Liu J, Kouzine F, Nie Z, Chung HJ, Elisha-Feil Z, Weber A, Zhao K and Levens D. The 
FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c-Myc 
expression. EMBO J, 2006: 25: 2119-2130.  
(2) Naomi Mitchell, Timothy Johanson, Nicola Cranna, Amanda Lee, Helena Richardson, Ross 
Hannan and Leonie Quinn. Hfp inhibits Drosophila Myc transcription and cell growth in a 
TFIIH/Hay-dependent manner. Development 2010: 137, 2875-2884.  
(3) K.G. Guruharsha, Robert A. Obar, Julian Mintseris, K. Aishwarya, R.T. Krishnan, K. 
VijayRaghavan and Spyros Artavanis-Tsakonas. Drosophila Protein interaction Map (DPiM). 
Fly 2011: 6:4, 246-253.  
  



	   44 

P-33 
COMPARISON BETWEEN CHROMATIN INSULATORS, CHS4, GAMMA AND tDNA 
IN THEIR ABILITY TO SUSTAIN TRANSGENE EXPRESSION WITHIN A HUMAN 
ARTIFICIAL CHROMOSOME (HAC) 
Lee, N.C.O.1, Kononenko, A.V.1, Lee, H.S.1, Tolkunova, E.N.2, Liskovykh, M.A.2, Kouprina, 
N.1 and Larionov, V.1   
1Laboratory of Molecular Pharmacology, CCR, NCI, Bethesda, MD; 2Institute of Cytology, 
Russian Academy of Sciences, St. Petersburg, Russia   
 
Human artificial chromosomes (HACs) are vectors that offer the advantages of capacity and 
stability in gene delivery and expression. Several studies have even demonstrated their use for 
gene complementation in gene-deficient recipient cell lines and animal transgenesis. Recently, 
we constructed an advance HAC-based vector, alphoidtetO-HAC with a conditional centromer. 
In this HAC, a gene-loading site was inserted into a centrochromatin domain critical for 
kinetochore assembly and maintenance. While by definition this domain is permissive for 
transcription, there have been no long-term studies on transgene expression within 
centrochromatin. In this study, we compared the effects of three chromatin insulators, cHS4, 
gamma-satellite DNA and tDNA, on the expression of an EGFP transgene inserted into the 
alphoidtetO-HAC vector. We analyzed two host cell lines, human HeLa and hamster CHO for 12 
weeks and found that insulators were essential for stable and strong transgene expression. The 
tDNA insulator composed of two functional copies of tRNA genes consistently gave high 
transgene expression in both cell lines. In CHO, the EGFP intensity of cell lines with insulators 
cHS4, gamma-satellite DNA and tDNA was 3-fold, 11-fold and 11-fold higher compared to the 
control without flanking insulators. However in cHS4 and the control, EGFP intensity fell 
significantly during the course of the 12 week experiment. In contrast no significant change in 
EGFP intensity was observed with either gamma-satellite DNA or tDNA insulators. In HeLa, the 
EGFP intensity of cell lines with insulators cHS4, gamma-satellite DNA and tDNA was 11-fold, 
24-fold and 35-fold higher than the control without flanking insulators. No significant change in 
EGFP intensity was observed in cell line with all three insulators. In contrast, in the absence of 
protective insulators, EGFP intensity of the control fell significantly, nearing complete loss of 
EGFP florescence after 12 weeks of culturing. We extended the experiment for the HeLa 
insulators cell lines up to 20 week and found no significant change in EGFP intensity. We infer 
that while proximity to centrochromatin does allow transgene expression, it does not protect 
genes lacking chromatin insulators from epigenetic silencing. Barrier elements that prevent gene 
silencing in centrochromatin would thus help to optimize transgenesis using HAC vectors.   
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LONG1, A NOVEL NON-CODING RNA IN CHROMOSOMAL INSTABILITY AND 
COLORECTAL CANCER PATHOGENESIS 
Ling, H.1, Spizzo, R.1, Atlasi, Y.2, Fodde, R.2 and Calin, G.A.1   
1Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, 
Houston, TX; 2Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, 
Rotterdam, The Netherlands   
 
The functional roles of SNPs within the 8q24 gene desert in cancer phenotype are not yet well 
understood. Here, we report that LONG1, a novel long non-coding RNA transcript (lncRNA) 
encompassing a SNP, is highly overexpressed in microsatellite-stable colorectal cancer and 
promotes tumor growth, metastasis and chromosomal instability. We demonstrate that MYC, 
miR-17-5p, and miR-20a are up-regulated by LONG1. We further identify the physical 
interaction between LONG1 and TCF4 resulting in an enhancement of Wnt signaling activity. 
We show that LONG1 is itself a Wnt downstream target suggesting the existence of a feedback 
loop. Our results support a new mechanism of MYC and Wnt regulation by a novel lncRNA in 
colorectal cancer pathogenesis.   
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CG METHYLATED MICROARRAYS IDENTIFY NOVEL METHYLATED 
SEQUENCE BOUND BY THE CEBPB|ATF4 HETERODIMER THAT ARE ACTIVE IN 
VIVO 
Mann, I.K.1,2, Chatterjee, R.2, Zhao, J.2, He, X.2, Weirauch, M.T.3, Hughes, T.R.1 and Vinson, 
C.2   
1Donnelly Centre, University of Toronto, Toronto, Canada; 2Laboratory of Metabolism, CCR, 
NCI, NIH, Bethesda, MD; 3Center for Autoimmune Genomics and Etiology (CAGE) and 
Divisions of Rheumatology and Biomedical Informatics, Cincinnati Children's Hospital Medical 
Center, Cincinnati, OH   
 
To evaluate the effect of CG methylation on DNA binding of sequence-specific B-ZIP 
transcription factors (TFs) in a high-throughput manner, we enzymatically methylated the 
cytosine in the CG dinucleotide on protein binding microarrays. Two Agilent DNA array designs 
were used. One contained 40,000 features using de Bruijn sequences where each 8-mer occurs 32 
times in various positions in the DNA sequence. The second contained 180,000 features with 
each CG containing 8-mer present three times. The first design was better for identification of 
binding motifs, while the second was better for quantification. Using this novel technology, we 
show that CG methylation enhanced binding for CEBPA and CEBPB and inhibited binding for 
CREB, ATF4, JUN, JUND, CEBPD and CEBPG. The CEBPB|ATF4 heterodimer bound a novel 
motif CGAT|GCAA 10-fold better when methylated. EMSA confirmed these results. CEBPB 
ChIP-seq data using primary female mouse dermal fibroblasts with 50X methylome coverage for 
each strand indicate that the methylated sequences well-bound on the arrays are also bound in 
vivo. CEBPB bound 39% of the methylated canonical 10-mers ATTGC|GCAAT in the mouse 
genome. After ATF4 protein induction by thapsigargin which results in ER stress, CEBPB binds 
methylated CGAT|GCAA in vivo, recapitulating what was observed on the arrays. This 
methodology can be used to identify new methylated DNA sequences preferentially bound by 
TF, which may be functional in vivo.   
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RELIABLE CHIP-SEQ RESULTS WITH DIAGENODE TRUE MICROCHIP KIT AND 
MICROPLEX LIBRARY PREPARATION KIT ON 10.000 CELLS 
Mazon, I.2, Sabatel, C.1, Panteleeva, I.1, Laczik, M.1, Berguet, G.1, Squazzo, S.2, Pendeville, H.1 
and Poncelet, D.1   
1Diagenode SA, CHU, Tour GIGA B34, Sart-Tilman, Belgium; 2Diagenode Inc., Denville, NJ 
 
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has 
become the gold standard for whole-genome mapping of protein-DNA interactions. However, 
conventional ChIP and library preparation protocols associated with current high-throughput 
sequencing require abundant amounts of starting material (at least hundreds of thousands of cells 
per immunoprecipitation) making it difficult to apply this technology when working with low 
starting amounts of cells.  
Diagenode has developed small-scale ChIP-seq protocols to work with limited samples. 
Diagenode provides the True MicroChIP Kit that enables successful ChIP on 10,000 cells. The 
kit's protocol has been thoroughly optimized for chromatin shearing on low cell amounts and 
ChIP followed by high-throughput sequencing on an Illumina sequencer. To enable sequencing 
on the low amounts of DNA recovered after ChIP on 10,000 cells, we developed a library 
preparation protocol for limited quantities of DNA. The MicroPlex Library Preparation Kit 
requires only picogram amounts of immunoprecipitated DNA inputs for library preparation and 
it is compatible with the Illumina platforms.  
We present here new ChIP-seq tools for genome-wide analysis optimized for use with low 
starting cell numbers. The performance of the optimized method was evaluated for read 
mapping, sensitivity and specificity at a range of starting cell numbers covering three orders of 
magnitude, starting with the published amount of 1 x 10^6 cells / IP and reduced to amounts of 
10.000 cells/IP.   
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REPROGRAMMING OF THE CHROMATIN LANDSCAPE: STEROID RECEPTOR 
CROSSTALK AT THE GENOMIC LEVEL 
Miranda, T.B., Voss, T.C., Sung, M-H., Baek, S., John, S., Hawkins, M., Grontved, L., Schiltz, 
R.L. and Hager, G.L.   
Laboratory of Receptor Biology and Gene Expression, CCR, NCI, NIH, Bethesda, MD 
 
Crosstalk between the estrogen receptor (ER) and the glucocorticoid receptor (GR) plays an 
important role in controlling many cellular processes. Physiological interactions between ER and 
GR are not only important for the development of certain tissues, such as the uterus and bone, 
but also may play an important role in breast cancer. Recent studies have shown that the GR and 
ER status in breast cancer is a significant factor for determining the outcome of the disease. 
However, the mechanistic details defining the cellular interactions between ER and GR are 
poorly understood. Since the regulation of receptor binding to response elements controls the 
transcriptional output in response to hormones, it is logical to suspect that co-treatment of cells 
with corticosteroids and estradiol would have an effect on the genome-wide binding landscapes 
for GR and ER. We investigated genome-wide binding profiles for ER and GR upon co-
activation, and characterized status of the chromatin landscape. We describe a novel mechanism 
dictating the molecular interplay between ER and GR. Upon induction, GR modulates access of 
ER to specific sites in the genome by reorganization of the chromatin configuration for these 
elements. Binding to these newly accessible sites occurs either by direct recognition of ER 
response elements, or indirectly through interactions with other factors. The unveiling of this 
mechanism is important for understanding cellular interactions between ER and GR, and may 
represent a general mechanism for crosstalk between nuclear receptors.   
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EFFECTS OF UPSTREAM BINDING FACTOR (UBF) LOSS ON RIBOSOMAL RNA 
GENE CHROMATIN AND SUB-NUCLEAR STRUCTURE 
Moss, T., Hamdane, N., Stefanovsky, V. and Tremblay, M.G .  
Department of Molecular Biology of Laval University, and Cancer Axis, the Research Centre of 
the Quebec University Hospital Centre, Quebec, QC, Canada   
 
UBF is a multi-HMGB-box transcription factor that id believed to induce an epigenetic 
reorganization of the Ribosomal RNA (rRNA) genes, and to mediate the growth factor regulation 
of Ribosome Biogenesis. Here we show that inactivation of the Ubf gene in cells derived from 
mice carrying a homozygous conditional Ubf deletion leads to a rapid depletion of UBF protein, 
a shut-down of rRNA gene transcription and the arrest of cell proliferation. Concomitantly, we 
observe major changes in rRNA gene chromatin, nucleolar fusion and genome-wide changes in 
gene expression. Subsequently, oncogenically transformed UBF-null cells uniformly enter 
caspase-dependent apoptosis. P53 levels are, however, not elevated preceding entry into 
apoptosis. The effects of UBF inactivation closely resemble those induced by cisplatin, a 
commonly used anti-cancer drug known to displace UBF from the nucleolus. Thus, the 
displacement of UBF explains the major cytotoxic effects of this drug and its anticancer activity. 
Homozygous inactivation of the Ubf gene in mouse arrests development at the 8-16 cell morula 
stage, that is immediately prior to embryo compaction. It is possible that this loss of zygotic UBF 
expression simply blocks development as the complement of maternal ribosomes becomes 
limiting. However, by 8 to 16 cells ribosomal RNA levels have not yet doubled. Alternatively, 
the establishment of nucleoli in the early embryo through activation of the ribosomal genes could 
play an important non-synthetic role in ensuring chromosome stability, correct chromosome 
segregation or by preventing p53 accumulation. In this respect, the data for the Ubf gene 
inactivation contrasts starkly with that for the gene encoding the RPI initiation factor TIF-
IA/Rrn3. TifIa-null mice develop as far as an equivalent of E7.5-8, by which stage total 
embryonic RNA, about 80% of which is ribosomal RNA, has increased some 103 times from 
that present in the oocyte. This work was supported by the Canadian Institutes of Health 
Research.   
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Bethesda, MD  
 
Metastatic prostate cancer (mPCa) is a highly lethal disease and molecular markers identifying 
disease subtypes and/or therapeutic targets are needed. We sequenced the exomes of five 
metastatic tumors and healthy kidney tissue from an index patient with castration resistant mPCa 
to identify lesions associated with disease progression and metastasis. A somatic missense TET2 
alteration predicted to alter protein structure was observed in all metastatic tumors but not the 
primary adenocarcinoma, indicating TET2 alteration occurred at the metastatic stage of disease. 
We sequenced TET2 in additional PCa tumors and cell lines and detected somatic missense 
alterations, LOH, and a frameshift truncation in a cell line derived from a metastatic prostate 
tumor, DU-145. We observed complex combinations of frequent and rare germline missense 
SNPs, which may contribute to a previously described association of TET2 with PCa risk by 
GWAS. Examination of TET2 binding partners by affinity purification, mass spectrometry, and 
forward and reverse immunoprecipitation, reveals a TET2 complex involved in androgen-
mediated gene expression. In summary, TET2 loss in mPCa deserves additional scrutiny and 
may define a subset of metastatic disease. TET2 function integrates metabolic (glucose), 
oxidative (iron), mitochondrial (α-ketoglutarate), and hormonal (androgen) signals. This is 
achieved, in part, through coincident epigenetic modification of histones and DNA by glucose 
and 5-hmC, respectively. TET2 loss in metastatic disease is predicted to alter androgen mediated 
gene expression which may be a response to androgen-ablation therapy and facilitate progression 
to castration resistant mPCa.   
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How the epigenome interprets signals from the extracellular mileau to regulate gene expression 
is still ill-defined. In studies aimed at understanding how the epigenome is regulated during 
differentiation of neuroblastoma (NB) cells, we identified that retinoids (RA), via activation of 
protein kinase A (PKA), phosphorylate, and inactivate EZH2 (EZH2-S21). ChIP analysis 
indicates that within 6 hrs of RA treatment there is a decrease in the levels of EZH2 and 
H3K27me3 binding to the RARß2 promoter although global levels of EZH2 had not declined.  
RA stimulates an increase in phosphorylation of EZH2 at serine 21, which disrupts EZH2 
binding to histone H3 and increases the number of cells expressing cytosolic EZH2. 
Pharmacologic or genetic inhibition of PKA and not AKT, as previously reported, inhibits P-
EZH2-S21 levels causing increases in H3K27me3 levels and decreases in steady-state and RA-
induced RARß2 mRNA levels. Moreover, transfection of NB with mutant EZH2-S21A 
attenuates the ability of RA to induce a cytosolic localization of EZH2 and blocks EZH2 target 
gene expression and differentiation. In contrast transfection of a phosopho-mimic EZH2-S21D, 
resides primarily in the cytosol, increases RARß mRNA levels and increases cellular 
differentiation. These findings are not restricted to NB, as we detect RA induced PKA-mediated 
increases in P-EZH2-S21 and its cytosolic localization in normal mouse embryo fibroblasts and 
embryonic stem cells. Our studies identify a novel mechanism by which cAMP and PKA, key 
mediators of extracellular signaling pathways, function to regulate EZH2 activity.	  
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DERIVED IN VITRO FROM EMBRYONIC STEM CELLS 
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Locus Control Regions (LCR) are cis-acting gene regulatory elements with the unique, 
integration site-independent ability to transfer the characteristics of their locus-of-origin’s gene 
expression pattern to a linked transgene in mice. LCR activities have been discovered in 
numerous T cell lineage expressed gene loci. These elements can be adapted to the design of 
stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell 
progeny of engineered stem cells. Currently, transgenic mice provide the only experimental 
approach that wholly supports all the critical aspects of LCR activity. Herein we report 
manifestation of all key features of mouse T cell receptor (TCR)-α gene LCR function in T cells 
derived in vitro from mouse embryonic stem cells (ESC). High level, copy number-related TCRα 
LCR-linked reporter gene expression levels are cell type-restricted in this system, and 
upregulated during the expected stage transition of T cell development. We further report that de 
novo introduction of TCRα LCR linked transgenes into existing T cell lines yields incomplete 
LCR activity. Together, these data indicate that establishing full TCRα LCR activity requires 
critical molecular events occurring prior to final T-lineage determination. This study additionally 
validates a novel, tractable and more rapid approach for the study of LCR activity in T cells, and 
its translation to therapeutic genetic engineering.   
 
[This work was initiated with support of NYS-DOH-NYSTEM grant C024302 (B.D.O.) and the 
Canadian Institutes of Health Research (J.C.Z.P.), and completed with the support of National 
Institutes of Health grants GM095402 (to B.D.O.) and RR003037/MD007599 (to Hunter 
College)]. 
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GENOTOXIC DRUGS AGAINST MELANOMA USING RECONSTITUTED 3D 
HUMAN SKIN MODEL 
Parekh, P., Redon, C., Weyemi, U. and Bonner, W.   
Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, MD  
 
Due to the lack of effective treatments, patients with advanced melanoma show poor survival 
rates. However, melanoma’s dermal location enables the application of human skin models. 
These models mimic many important characteristics of skin in vivo. Monitoring gamma-H2AX 
foci to assess DNA double-strand break (DSB) levels in reconstituted human 3D skin tissue 
harboring melanoma tumor cells may provide insights for drug development against cancer. In 
addition to the differential toxicities of genotoxic agents on the various cell types, we examine 
how the early drug response of normal tissues might serve as surrogates for predicting treatment 
efficacy on the tumors. Commercially available reconstituted 3D human skin tissue consists of 
dermal fibroblast and epidermal keratinocyte layers with malignant melanoma A375 cells which 
have been cultured to form a multilayer, highly differentiated epidermis containing various 
stages of cutaneous melanoma malignancy. Genotoxic drugs representative of several different 
categories were studied, including bleomycin (a radiomimetic), camptothecin (a topoisomerase I 
inhibitor), temozolomide (a DNA alkylating agent), cisplatin (a DNA intercalating agent) and 
gemcitabine (a nucleoside analog). DNA DSB levels were monitored by gamma-H2AX foci 
formation by immunohistochemistry and apoptosis by TUNEL assay. Tumor growth was 
monitored by H&E staining. In addition to study drug responses in tumor cells, we also 
examined the impacts of cancer drugs in normal cells (i.e., basal layer, keratinocytes and 
fibroblasts). Determining drug response in normal cells vs. cancer cells in the same 3D tissue 
may tell us if normal tissues may serve as surrogates to predict drug efficacy in tumors. A wide 
range of responses in both tumor and normal tissue by genotoxic drugs were observed, including 
increased genotoxicity, tumor regression and normal tissue toxicity. The relative amounts of 
DSB formed in both melanoma and normal tissues were drug dependent. Thus, this study 
provides new insights for the use of both gamma H2AX and reconstituted 3D human skin tissues 
to predict drug efficacies. If validated, such models would help reduce the use of animals for 
preclinical studies.   
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Transcription is a highly ordered, regulated multi-step process in eukaryotic gene expression. 
Negative elongation factor (NELF) and DRB sensitivity inducing factor (DSIF) cooperatively 
bind to elongating RNA polymerase II (Pol II) and induce transcriptional pausing, which is 
alleviated by pause-release factor, P-TEFb mediated phosphorylation of Pol II C-terminal 
domain at serine 2. However, the mechanism of P-TEFb recruitment and regulation of 
NELF/DSIF during inducible gene expression where recruitment of Pol II is rate limiting step 
remains poorly understood. We addressed this question in interferon (IFN) stimulated 
transcription, focusing on BRD4, a BET family protein that interacts with P-TEFb. Besides P-
TEFb, BRD4 binds to acetylated histones through the bromodomain. We examined the assembly 
of transcription pausing and elongation machinery for several IFN stimulated genes (ISGs) in 
NIH3T3 fibroblasts with detailed time kinetic and chromatin immuno precipitation studies. 
Specifically, we found that IFN stimulation triggered inducible BRD4 dependent P-TEFb 
recruitment at the transcription start sites of multiple ISGs, which positively regulates 
transcription elongation. Likewise, NELF and DSIF were hardly detectable on ISGs prior to 
stimulation, but recruited robustly after IFN treatment. A shRNA-based knockdown of NELF 
revealed that it negatively regulates the passage of Pol II and DSIF across the ISGs during 
elongation, which reduces total ISG transcript output. Analyses with a BRD4 small molecule 
inhibitor showed that IFN-induced recruitment of P-TEFb and NELF/DSIF was under control of 
BRD4. Together, our data suggests a model where BRD4 coordinates both positive and negative 
regulation of ISG transcription elongation.   
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Developmentally regulated transcription often depends upon physical interactions between distal 
enhancers and their cognate promoters. Recent genomic analyses suggest that promoter-promoter 
interactions might play a similarly critical role in organizing the genome and establishing cell-
type specific gene expression. The Igf2/H19 locus has been a valuable model for clarifying the 
role of long-range interactions between cis regulatory elements. Imprinted expression of the 
linked, reciprocally imprinted genes is explained by parent-of-origin specific chromosomal loop 
structures between the paternal Igf2 or maternal H19 promoters and their shared tissue-specific 
enhancer elements. Here we further analyze these loop structures for their composition and for 
their impact on expression of the linked long non-coding RNA, Nctc1. We show that Nctc1 is 
co-regulated with Igf2 and H19 and physically interacts with the shared muscle enhancer. In fact, 
all three co-regulated genes have the potential to interact not only with the shared enhancer but 
also with each other via their enhancer interactions. Furthermore, developmental and genetic 
analyses indicate functional significance for these promoter-promoter interactions. Altogether, 
we present a novel mechanism to explain developmental specific imprinting of Nctc1 and 
provide new information about enhancer mechanisms and about the role of chromatin domains in 
establishing gene expression patterns.   
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A TRULY GLUCOCORTICOID RECEPTOR MUTANT: ROLE OF MULTIPLE 
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Glucocorticoids (GCs) influence the activity of almost every cell in mammalian organisms, 
mainly through binding to the Glucocorticoid Receptor (GR). Although GCs are essential for life 
they are also implicated in the pathogenesis of disease, and produce many unwanted effects 
when given therapeutically. In the absence of ligand GR is associated to the hsp90 chaperone 
heterocomplex and primarily localizes in the cytoplasm, while the GR-ligand complex is mainly 
nuclear. Once in the nucleus, the activated GR regulates gene expression either by direct binding 
to specific sequences in the DNA, or by protein-protein interactions with other transcription 
factors. These two mechanisms of action were historically designated GR transactivation and GR 
transrepression, respectively. Although GR homodimerization is considered an essential step in 
the GR-transactivation pathway, it is still not clear whether GR dimerizes before or after DNA 
binding; or which regions of the protein are functionally involved in the homodimerization 
process. A point mutation (A465T) within GR's DNA-binding domain (DBD) [also known as the 
GRdim mutant] has been suggested to be crucial for dimerization and DNA binding. However, 
this mechanism has recently been challenged. Here, we analyzed GR oligomerization state in 
vivo by using the Number and Brightness (N&B) assay. This novel technique, based on moment-
analysis, provides the average number of moving, fluorescent molecules and their brightness at 
every pixel of images. Therefore, N&B can be used to obtain the oligomerization state of 
proteins in living cells with high spatial resolution. Our results suggest a complete, reversible, 
and DNA-independent, ligand-induced model for GR dimerization within the nuclear 
compartment. We demonstrate that GRdim is able to form dimers and that an additional mutation 
(I634A) in the Ligand-binding domain (LBD) severely compromises homodimer formation. 
Thus, GR form dimers in vivo through a combined action of the LBD and the DBD regions. 
Transactivation and transrepression assays indicate no correlation between the 
monomeric/dimeric state of the receptor and its transcriptional activity. Finally, chromatin 
immunoprecipitation experiments suggest that dimerization status affects DNA binding only to a 
subset of GR binding sites. These results will have major implications on the future search for 
dissociated glucocorticoid ligands for human therapy.   
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NURF REGULATES CELL-TYPE GENE EXPRESSION IN PART THROUGH THE 
UNIQUITOUS MULTIVALENT FACTOR CTCF 
Qiu, Z. and Landry, J. 
Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, 
Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, 
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Organism development and tissue formation depend on distinct gene expression in the different 
cells and its aberrant expression leads to diseases or cancers. The gene expression is not only 
controlled by transcription factors, but also influenced by epigenetic regulators such as 
Nucleosome Remodeling Factor (NURF). NURF, an ATP-dependent chromatin remodeling 
complex consisting of three subunits including BPTF, SNF2L and pRBAP46/48, positively or 
negatively regulates transcription of several hundred Drosophila genes in vivo. However, how it 
regulates the expression of genes remains elusive in many aspects. In this investigation, we 
observed that some NURF-dependent genes were cell-type dependent in regulation in the double 
positive cells, ES cells and MEF cells of mice, but interestingly they became cell-type 
independent changes in nucleosome occupancy in those cells. To address this question, BPTF 
knock-out and knock-down ES cells and fibroblast cells were used to perform experiments. The 
results showed that there were physical interactions between BPTF, CTCF and SA2. ChIP data 
indicated that NURF, CTCF and Cohesin were enriched on the same DNA site of some genes 
chosen randomly and the PNI assay demonstrated that CTCF binding site possessed enhancer, 
insulator or silencer activity, which was BPTF dependent. All these results were verified by an 
analysis of different DNA fragment in the oncogene cyclin D1, a gene which is NURF dependent 
in multiple cell types. Further research exhibited that some CTCF binding sites were near the 
nucleosome which contains H2AZ instead of H2A. Our in vitro chromatin remodeling assay 
revealed that in comparison with H2A nucleosome, NURF made H2AZ nucleosome shift faster 
and form more distinct nucleosomes. Taken together, NURF plays a critical role in conversion of 
cell-independent genes in regulation to cell-dependent genes in expression through the 
ubiquitous multivalent factor CTCF. Our future study will focus on analysis of functional 
domains of BPTF which cause chromatin remodeling to completely understand the mechanism 
of NURF and apply it to medical treatment.   
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THE EPIGENETICS OF EPITHELIAL SELF-RENEWAL IN THE INTESTINE  
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Self-renewing tissues must control both proliferation and differentiation in space and time, and 
maintain this control over thousands of cell divisions throughout life. The murine intestinal 
epithelium is an excellent model system in which to study self-renewal. The intestinal epithelium 
has a unique organization in which stem cells are harbored in crypts, which produce progenitors 
and finally clonal populations of differentiated cells that migrate in ordered cohorts up the villus 
axis. Disrupted maintenance of the intricate balance of proliferation and differentiation can lead 
to loss of epithelial integrity and barrier function or to cancer. We have learned a great deal about 
the genetic control of intestinal differentiation and proliferation from modern mouse genetics. 
However, the characterization of the control of gene expression during self-renewal of the 
intestinal epithelium at the whole genome level has lagged behind, due in part to the mixture of 
numerous cell types in various stages of differentiation and the difficulty in sorting pure cell 
populations, as well as the lack of genome-wide tools. Homeostasis of self-renewal tissues 
requires the tight control of gene expression throughout multiple stages of differentiation. Gene 
expression is tightly correlated with the epigenetic state through DNA methylation and histone 
modifications. Furthermore, maintenance of DNA methylation has been shown to be important 
for self-renewal and appropriate differentiation. Loss of the key enzyme required for 
maintenance of DNA methylation, DNA Methyltransferase 1 (Dnmt1), in the human epidermis 
has been shown to cause inappropriate differentiation and loss of the progenitor pool, resulting in 
total loss of regenerative capacity. There is a tight correlation between epigenetic status of genes 
and their expression in self-renewing, progenitor and fully differentiated cell types; however, the 
mechanism of how changes in epigenetic status direct gene expression and the progression from 
stem cell to its differentiated descendants is unclear. Our work addresses the importance of 
epigenetic modifications in the maintenance of self-renewal in the intestine. We have employed 
cell-sorting techniques to separate stem cells and differentiated cells from the mouse small 
intestinal epithelium and used mRNA sequencing and whole-genome shotgun bisulfite 
sequencing (WGSBS) to determine how gene expression is correlated with DNA methylation 
during self-renewal of the intestine. We show that genes important for stem cell maintenance and 
proliferation are methylated during differentiation and loss of methylation by deletion of Dnmt1 
in the adult causes crypt expansion in vivo. Our research shows that DNA methylation plays an 
important role in the maintenance of the intestinal epithelium.   
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MBD3 ACCUMULATES AT PROMOTERS AND ENHANCERS OF ACTIVE GENES 
Shimbo, T.1, Du, Y.2, Grimm, S.2, Mav, D.3, Shah, R.3, Shi, H.4 and Wade, P.A.1   
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The Mi-2/nucleosome remodeling and histone deacetylase (NuRD) complex is a multiprotein 
machine proposed to regulate chromatin structure by nucleosome remodeling and histone 
deacetylation activities. Recent reports describing localization of NuRD are not in complete 
agreement and provide new insights that question previous models on NuRD action. Here, we 
provide location analysis of endogenous MBD3, a component of NuRD complex, in two human 
breast cancer cell lines (MCF7 and MDA-MB-231) using two independent genomic techniques: 
DNA adenine methyltransferase identification (DamID) and ChIP-Seq. Contrary to existing 
models, MBD3 preferentially associated with CpG rich promoters marked by H3K4me3 and 
lacking 5-methyl C or 5-hydroxymethyl C. MBD3 also showed cell-type specific localization 
across gene bodies, peaking around the transcription start site (TSS). A subset of sites bound by 
MBD3 was enriched in H3K27Ac and was in physical proximity to promoters in three-
dimensional space, suggesting function as enhancers. MBD3 enrichment was also noted at 
promoters modified by H3K27me3. These data suggest that MBD3, and by extension the Mi-
2/NuRD complex, may have multiple roles in fine-tuning expression for both active and silent 
genes. These data represent an important step in defining regulatory mechanisms by which Mi-
2/NuRD complex controls chromatin structure and modification status.   
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EFFECTS OF DNA METHYLATION ON NUCLEOSOME STABILITY 
Simeon, T., Ratner, M. and Schatz, G. 
Department of Chemistry, Northwestern University, Evanston, IL 
 
Recent experimental studies suggest that the mechanical properties of a given DNA sequence 
dictate its nucleosome positioning propensity, and therefore may play an important role in gene 
regulation.  In particular, the nucleosome affinity of DNA sequences is higher in sequences that 
have dinucleotide repeated every 10 bp.  Likewise, CpG methylation of DNA is an epigenetic 
modification associated with the inactivation of transcription and the formation of a repressive 
chromatin structure. Understanding the changes in the structure of nucleosomes with various 
dinucleotide and upon CpG methylation and is necessary in providing insight of the mechanisms 
of gene repression. The Fragment-Molecular Orbital (FMO) and the Density Functional Theory-
Symmetry Adapted Perturbation Theory (DFT-SAPT) methods were utilized to systematically 
study the stacking effects of two different (linear and bent) DNA fibers of 18 bps length as a 
function of both twist and rise (which is related to its bending propensity). The DFT-SAPT 
method provides insight into the π-stacking and hydrogen-bonded interactions of DNA structures 
on the basis of electrostatic and dispersion contributions. Results indicate sequences with CpG 
methylation along with specific dinucleotides have lower interaction energies-this is associated 
to higher nucleosome affinity. These findings suggest that changes in the physical properties of 
nucleosomes induced upon CpG methylation may contribute directly to the formation of a 
compacted chromatin structure. Research Supported by NIH-PSOC grant #U354CA143869. 
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STOICHIOMETRY OF THE CARDIOGENIC SWI/SNF-LIKE CHROMATIN-
REMODELING COMPLEXES SPECIFIES HEART DEVELOPMENT 
Singh, A.P. and Archer, T.K.   
Chromatin & Gene Expression Section, Laboratory of Molecular Carcinogenesis, NIEHS   
 
The regulatory networks of differentiation programs in mammalian embryos have been partly 
characterized; however, the molecular mechanisms of lineage-specific (heart) gene regulation by 
global chromatin changes have been unclear. Here, we show that several distinct cardiogenic 
SW/SNF-like complexes exist in the developing heart, and BAF-A complexes act as a repressive 
regulator during cardiac differentiation. Using an innovative proteomics approach, we show that 
various type of ATP-dependent SWI/SNF-like chromatin-remodeling complexes exist in the 
developing heart, and a change in stoichiometry and in subunit composition in the heart, differed 
from those of the head and trunk characterized at the E8.5 mouse embryo. Early heart complexes 
in which BAF60b, 60c, 250a, 250b and polybromo BRD7 are quantitatively associated with the 
SWI2/SNF2-like ATPases, Brg and Brm. During development, these subunits show distinct 
spatiotemporal patterns of expression between the heart, head and trunk with elevated and 
specific expression of BAFs 250a, 200, 180 and 60c in the heart. Preventing the BAF250a/BAF 
complex led to upregulation of cardiac genes thus results impaired fully functional 
cardiomyocyte differentiation. We found that BAF250a directly binds to the regulatory DNA 
sequence located in the enhancer/promoter region of many key genes in developing heart. 
Consistent with this, in the absence of BAF250a, active chromatin mark and chromatin 
accessibility is increased, and poised chromatin mark decreased on the regulatory region due to 
destabilization of the HDAC/NURD complexes. Hence distinct SWI/SNF-like complexes exist 
in the developing heart, and BAF250a-containing BAF-A complexes defines transcriptional 
regulation to fine tune transcription by preventing the spread of active chromatin during early 
heart development.   
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NON-TRANSCRIPTIONAL ROLES FOR SP1 IN PREVENTING CHROMOSOMAL 
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Sowash, A. and Azizkhan-Clifford, J.   
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Philadelphia, PA  
 
Genomic instability is a broad term used to describe the failure of a cell to pass a complete and 
intact copy of its genome to its daughter cells, and can occur through the gain or loss of whole 
chromosomes during cell division. When dynamic and continual, this phenomenon is classified 
as whole chromosomal instability (CIN). CIN is a common feature of many cancers, and is 
associated with poor patient outcome in multiple cancer types, as well as multi-drug resistance 
and tumor heterogeneity, underscoring its clinical importance. Once thought to be a by-product 
of cell transformation, CIN is now emerging as a causative factor in cancer development. Despite 
its prevalence and clinical importance, the exact mechanisms that lead to CIN remain to be 
determined. Since its discovery in cancer, many research groups have identified mechanisms 
that, when lost or disrupted, can lead to chromosome missegregation and CIN. Those 
mechanisms include cohesion defects, defects in kinetochore-microtubule attachment at the 
centromere, weakening or loss of the spindle assembly checkpoint (SAC), and/or centrosome 
amplification. The transcription factor Specificity Protein 1 (Sp1) regulates the expression of 
genes involved with many cellular processes, including differentiation, cell cycle progression, 
DNA repair, apoptosis, and senescence. Sp1 binds to specific GC-rich elements through its 
highly conserved carboxy terminal zinc finger DNA binding domain and functions to recruit 
different factors to chromatin in order to influence transcription. Our previous work shows that 
Sp1 is important for maintaining chromosomal stability during mitosis. We have shown that loss 
of Sp1 results in abnormal chromosome alignment along the metaphase plate, creation of 
micronuclei, and aneuploidy. More recently, we have shown that Sp1 knockdown results in 
lagging chromosomes and anaphase bridges, all of which are phenotypes consistent with CIN. 
Preliminary data indicates that Sp1 localizes to the centromere during mitosis and loss of Sp1 
results in defects in chromosome pairing and sister chromatid cohesion. This phenotype can 
result from defects in several different processes, including the sister chromatid cohesion 
machinery, kinetochore-microtubule attachment, and/or the spindle assembly checkpoint. Our 
data shows that the Sp1 DNA binding domain is not required for localization to the centromere, 
suggesting a non-transcriptional role for Sp1 at the centromere-kinetochore region during 
mitosis. Interestingly, this data differs from previously published works that describe Sp1 as 
being evicted from the chromatin during mitosis. Therefore, we hypothesize that Sp1 prevents 
chromosomal instability through a novel non-transcriptional mechanism at the centromere-
kinetochore region during mitosis. Results of experiments testing this hypothesis will be 
presented.   



	   63 

P-52 
CHARACTERING B CELL LYMPHOMA SELF-RENEWING CELLS AND THEIR 
ROLE IN LYMPHOMA RELAPSE 
Stevens, I.   
NICHD, NIH, Bethesda, MD   
 
Diffuse Large B-cell Lymphoma (DLBCL) is an aggressive form of non-Hodgkin’s Lymphoma 
(NHL) with one-third of patients either do not respond to initial therapy or relapse after standard 
therapy, such as CHOP or R-CHOP. Patients who relapse see initial tumor regression but the 
tumor comes back and is usually chemoresistant. Although relapses normally occur early, mainly 
within the first 2-3 years after initial treatment, some do occur after 5 years. Treatment options 
for relapse and refractory DLBCLs are limited, including salvage chemotherapy followed by 
autologous stem cell transplantation. However only 10% of the relapsed patients can achieve 3-
year progression-free survival with these treatments, underlying the urgent need of novel 
approaches to treat DLBCL relapse. Unfortunately, our current understanding of the molecular 
mechanisms associated with DLBCL relapse is limited.   
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ChAP-MS: A METHOD FOR IDENTIFICATION OF PROTEINS AND HISTONE 
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The field of epigenomics has been transformed by chromatin immunoprecipitation approaches 
that provide for the localization of a defined protein or posttranslationally-modified protein to 
specific chromosomal sites. While these approaches have helped us conceptualize epigenetic 
mechanisms, the field has been limited by the inability to define features like the proteome and 
histone modifications at a specific, native genomic locus in an unbiased manner. We developed 
an unbiased approach whereby a unique native genomic locus was isolated, which was followed 
by high resolution proteomic identification of specifically associated proteins and histone 
posttranslational modifications. This Chromatin Affinity Purification with Mass Spectrometry 
(ChAP-MS) technique was used to specifically enrich a 1,000 base-pair section of GAL1 
chromatin under transcriptionally active and repressive conditions, and to identify the 
specifically bound proteins and histone posttranslational modifications. ChAP-MS should yield 
unprecedented insight into the regulatory mechanisms of transcription and help identify factors 
that epigenetically control chromatin function.   
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Bone regeneration from mesenchymal stem cells (MSC) is a natural repair mechanism that 
resembles the embryonic process of bone formation. Although bone undergoes life-long 
remodeling, there is a substantial lack of information on MSC differentiation and key regulators 
in this process. The purpose of this study was to investigate global chromatin changes during 
MSC differentiation into osteoblast and how these changes affect transcriptional regulation. 
METHODS: We used a human fetal osteoblastic cell line, hFOB, has been immortalized by 
SV40 pUCSVtsA58, a temperature sensitive vector. hFOB cells resemble mesenchymal stem 
cells when grown at 34C, and are capable of undergoing multilineage differentiation to 
adipocyte, osteoblast, or chondrocyte when shifted to 39C in the presence of specific growth 
factors. At 39C they can spontaneously differentiate into osteoblast, a process that takes several 
weeks. To characterize phenotypic and genotypic changes during differentiation to osteoblast 
and adipocyte lineages, we performed cell staining by Alizarin Red S dye and Oil Red-O, as well 
as qPCR for several key osteoblast and adipocyte-specific genes, such as ALP, COL1A1, 
RUNX2, PPARγ, and others. 
Detection of sites in mammalian chromatin that are hypersensitive to DNase I (DHS) has been 
recently adapted to allow examination of global chromatin landscape and its changes in response 
to hormones and differentiation. To investigate global chromatin transitions during osteoblast 
differentiation, we performed DNase-seq. To select an optimal sample for sequencing, we 
developed a quality control method using negative primers matched to closed chromatin and 
positive primers matched to hypersensitive sites common among multiple cell lines (retrieved 
from ENCODE datasets). RESULTS: When hFOB cells are shifted to 39C and exposed to 
osteogenic induction media (OIM) that contains dexamethasone, the osteoblast differentiation 
process is significantly accelerated, with an increase in osteoblast gene expression by day 8 
[Example: an 11-fold increase in Alkaline Phosphatase (ALP)]. The accumulated mineralized 
matrix deposit in cells exposed to OIM was also detected at day 8. The number of DHS elements 
increased significantly during the differentiation process. Examination of these elements will 
allow the characterization of regulatory circuits important in the osteoblast differentiation 
process.  
CONCLUSIONS: We established a QC method that enables us to select samples with 
appropriate levels of DNase I digestion prior to fragment isolation and sequencing. We can apply 
this method to other cells and tissues following DNase I, Benzonase and similar methods of 
enzymatic digestion of DNA.  
FUTURE WORK: We will extend the analysis of DHS-seq on hFOB cells during osteoblast 
differentiation, perform bioinformatics to investigate transitions in the chromatin landscape 
during osteoblast differentiation, determine and validate key regulators involved in this process.   
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STAT PROTEINS: ORCHESTRATORS OF GENOMIC ENHANCERS 
Vahedi, G., Takahashi, H., Nakayamada, S., Sun, H.W., Sartorelli, V., Kanno, Y. and O'Shea, 
J.J.   
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Genomic enhancers are recognized as primary elements that regulate selective gene expression. 
However, the interplay between signaling pathways and actively used enhancer elements is not 
known. We use CD4+ T cells as a model of differentiation, mapping the activity of cell-type-
specific enhancer elements in T helper 1 (Th1) and Th2 cells. Mapping the chromatin signature 
of active enhancers, we establish that signal transducers and activators of transcription (STAT) 
proteins have a major impact on the activation of lineage-specific enhancers. In addition, STAT 
proteins are responsible for the suppression of enhancers associated with alternative cell fates. 
Transcriptome analysis further supports a functional role for enhancers regulated by STATs. 
Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to 
fully establish the chromatin signature of STAT-dependent enhancers. Thus, these findings point 
to a critical role of STATs as environmental sensors in dynamically shaping the specialized 
enhancer architecture of differentiating cells.   
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Arginine methylation is a common post-translational modification that occurs in eukaryotes. It is 
mediated by a group of enzymes called Protein ARginine MethylTransferases (PRMTs). The 
PRMT family has nine members, PRMT1-9. The current project focuses on PRMT4, also 
referred to as CARM1 (Coactivator-Associated ARginine Methyltransferase 1). CARM1 
methylates histone H3 (at Arg17), the histone acetyltransferase, p300/CBP and GRIP1, a 
transcriptional co-activator, all of which positively influence transcription and therefore CARM1 
is considered a coactivator. The methylation events on these substrates are believed to generate 
docking sites for effector proteins, which will further modulate their protein-protein interactions 
that are involved in transcription and splicing, although the exact mechanism of how this 
happens is unclear. In order to better understand the role of CARM1 in cellular processes, we 
seek to identify its substrates. For this purpose, we generated and characterized Pan-CARM1 
substrate antibodies. Using an immunoprecipitation (IP)/mass spectrometry approach, we 
identified over 100 putative CARM1 substrates and selected a subset of these proteins (26) for 
further evaluation. This screen identified a few novel CARM1 substrates, one of which is 
Med12, a component of the Mediator complex. Besides its negative regulatory role in general 
transcription, Med12 possesses multiple other functions in the Wnt signaling pathway, NANOG 
pathway and REST-mediated gene silencing. Med12 was shown to aid in REST-mediated 
silencing by recruiting G9a. Particularly, G9a interacts with Med12 at its PQL domain, where it 
is also methylated. Based on these observations, we propose that methylation on Med12 
potentially affects its interaction with G9a, thereby influencing the repressive functions of REST. 
We will test this hypothesis by performing Co-IP assays between Med12 and G9a in WT and 
CARM1 KO cells. Additionally, ChIP-seq analysis will be done with Pan-CARM1 substrate 
antibodies, which will help determine the genomic distribution of CARM1 activity. ChIP-seq 
experiments will also be done with methyl-specific Med12 antibody and we expect to see an 
overlap between Med12 and CARM1 activity profiles. We envision that a major mechanism of 
transducing CARM1’s co-activator activity is by blocking the repressive function mediated by 
the Med12 and G9a interaction.   
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The binding of sequence specific transcription factors leading to the eviction nucleosomes is a 
fundamental process of eukaryotic gene regulation. Despite the wealth of available data 
concerning the occupancy of transcription factors and nucleosomes in the human genome, we 
currently lack methods to measure their co-localization on the same chromatin template. Here, 
we describe a novel method leveraging DNase I that detects transcription factors and 
nucleosomes with nucleotide precision within the same experiment. We find that small 
fragments released during DNase I digestion of intact nuclei delineate the precise boundaries of 
transcription factor binding sites and then these fragments are in a quantitative relationship with 
transcription factor occupancy. We identified >500,000 nucleosomes that flank canonical DNase 
I hypersensitive sites in both proximal and distal configurations. We observed that transcription 
factor binding sites are depleted within sequences overlapping the nucleosome core particle, 
while enriched at the boundaries, demonstrating nucleosome positioning by bound sequence 
specific transcription factors. Finally, we resolve high-resolution structures of both transcription 
factor and nucleosome occupancy at active human promoters.   
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SETBP1 IS AN ONCOGENE CAPABLE OF INDUCING MYELOID LEUKEMIA 
DEVELOPMENT  
Vishwakarma, B.A., Oakley, K., Han, Y. and Du, Y.   
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We have found previously that overexpression of Setbp1, an AT-hook transcription factor, can 
immortalize mouse myeloid progenitors in culture, suggesting Setbp1 activation could be a 
driver mutation capable of inducing myeloid leukemia development. To test this idea, we 
transduced 5-fluorouracil treated murine bone marrow progenitors with a retrovirus expressing 
Setbp1 and marker GFP, and subsequently transplanted them into lethally-irradiated congenic 
mice. Engraftment analysis of transduced cells in recipient mice showed that their representation 
in donor cells increased with time suggesting that Setbp1 expression promotes proliferation of 
hematopoietic progenitor cells. Setbp1 overexpression in hematopoietic stem cells (HSCs) may 
also promote their commitment to the myeloid lineage as significantly higher percentage of cells 
expressed myeloid marker Gr-1. More interestingly, 45% of transplanted mice developed 
myeloid leukemia within a year starting as early as 55 days post transplantation. Leukemic mice 
displayed enlarged spleens and leukemic infiltration into non-hematopoietic tissues including 
liver and lung. Secondary recipients of spleen cells from leukemic mice developed the same 
disease with much shorter latency, suggesting that additional mutations may be required for 
Setbp1-induced leukemic transformation. We have identified Mllt3 as a potential cooperating 
partner for Setbp1 during leukemia development by cloning retroviral insertions in these Setbp1-
induced leukemias. Furthermore, enforced expression of Setbp1 in lin- sca1+kit+ (LSK) cells 
increased their in vivo repopulating capabilities after secondary bone marrow transplant, 
suggesting that Setbp1 may promote self-renewal of HSCs. Thus, these data suggests that Setbp1 
is an oncogene in the hematopoietic system capable of inducing myeloid leukemia development 
by disrupting normal development of hematopoietic stem and progenitors.   
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Mot1, an essential protein in S. cerevisiae, regulates the dynamics of TATA-binding protein 
(TBP) by displacing it from promoters in an ATP-dependent manner. Mot1 also belongs to the 
Swi2/Snf2 enzyme family, whose members broadly regulate various processes like transcription, 
replication and repair. While many of the Swi2/Snf2 ATPases are subunits of large complexes, 
Mot1 and its human homolog, BTAF1, act as single polypeptides on TBP. In order to gain 
insight into the mechanism by which these enzymes disrupt protein-DNA interactions, we used a 
FeBABE-mediated hydroxyl radical cleavage assay to map the domains of Mot1 that interact 
with promoter DNA. Using this assay, we found first that the Mot1 ATPase domain interacts 
with DNA upstream of the TATA box. Using the ATP analog, ADP-AlF4, we trapped a putative 
transition-state complex in which the ATPase domain has undergone a conformational change in 
which an additional domain is engaged with DNA and the complex is primed for TBP-DNA 
dissociation. Gaps primarily on one strand of DNA upstream of the TATA box inhibit the 
catalytic activity of Mot1 suggesting that Mot1 displaces TBP by tracking on a single strand of 
DNA. The C-terminal Mot1 ATPase domain is tethered to TBP by a spring-like array of HEAT 
repeats. We propose that the HEAT array might not function as a passive tether and instead may 
store conformational energy in the spring so that it can be used to facilitate the dissociation of 
TBP from DNA.   
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MICRORNA-MEDIATED REGULATION OF THE BRG1 CHROMATIN 
REMODELING COMPLEX IN HUMAN EMBRYONIC STEM CELLS 
Wade, S.L., Ward, J.M. and Archer, T.K. 
Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 
NIH, Research Triangle Park, NC  
 
Embryonic stem (ES) cells hold great promise for regenerative medicine because of their unique 
characteristics of self-renewal and pluripotency. Balance between ES cell pluripotency and 
lineage commitment is maintained in part by epigenetic regulators such as the developmentally-
regulated Brg1 chromatin remodeling complex. Subunits of the Brg1 complex, termed BAFs, are 
assembled in a combinatorial fashion to dictate context-dependent functional specificity. 
Although BAF expression has been studied in mouse ES cells, the mechanisms of regulation 
remain unknown. Here we provide, to our knowledge, the first mechanistic insight into BAF 
regulation in ES cells. We utilized in vitro culture and differentiation of hES cell lines to explore 
the regulation of BAFs in early human development. Through gain- and loss-of-function 
experiments we identified a microRNA-mediated regulatory event critical for BAF regulation. 
The ES-cell specific miR-302 family directly represses BAF170 in hES cells. This repression is 
relieved upon differentiation and miR-302 inhibition. The importance of BAF170 repression for 
gene expression was explored through genome-wide microarray studies. 352 genes were 
significantly affected at least 1.5 fold by BAF170 KD with 63% also misregulated upon miR-302 
inhibition. Functional analysis revealed enrichment in Nodal signaling. qRT-PCR confirmed that 
miR-302 and BAF170 conversely regulate endodermal differentiation markers and targets of 
Nodal signaling, a pathway known to regulate both ES cell pluripotency and endodermal 
differentiation. Our data support a role for miR-302-mediated BAF170 repression in maintaining 
pluripotency through suppressing endodermal differentiation and suggest that relief of this 
inhibition is important for human endodermal lineage specification. This places the BRG1 
complex at the center of cell fate decisions during early human development and provides 
mechanistic insight into the essential role of this complex in balancing stem cell pluripotency and 
differentiation.  
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MECHANISM OF TRANSLESION TRANSCRIPTION OF AN OXIDATIVE 
CYCLOPURINE DNA DAMAGE 
Walmacq, C.1, Wang, D.2, Brooks, P.J.3, Lubkowska, L.1 and Kashlev, M.2   
1GRCBL, CCR, NCI, Frederick, MD; 2Skaggs School of Pharmacy and Pharmaceutical Science, 
UC, San Diego, CA; 3Laboratory of Neurogenetics, NIAAA, Bethesda, MD  
 
The 8, 5'-Cyclopurines-2'deoxyadenosine DNA lesion (CydA) is one of the major oxidative 
DNA damage that strongly blocks elongation by RNA polymerase II (Pol II) and triggers 
transcription-coupled DNA repair. Here, we present a functional dissection of individual steps in 
Pol II negotiation with a CydA that allows bypass of the lesion without repair. A major barrier to 
Pol II emerges subsequently to CydA loading to the active site and after proper UMP 
incorporation opposite the CydA (step 1). The barrier involves Pol II failure in loading the 
adjacent base 5’ to the CydA into the active site resulting in slow non-templated AMP insertion 
according to an A-rule (step 2) known for DNA polymerases and recently demonstrated for UV-
induced CPD lesion bypass by Pol II. The last rate-limiting step in the bypass involves extension 
of the 5’A with the next cognate nucleotide (step 3), which includes an impaired translocation of 
the CydA lesion beyond the active center of Pol II (i-1 site). Alternatively, Pol II can also 
catalyze slow templated UMP incorporation opposite the CydA adjacent 5’ base leading to an 
error-free bypass (step 2). Our findings corroborate previous observations on the CydA bypass in 
human cells that showed both error-free bypass, as well as a preferred misincorporation of 
adenine opposite the adjacent base 5’to the lesion. Notably, the CydA bypass in vitro is 
substantially slower than in living cells indicating involvement of special factors assisting the 
process in living cells. These findings reveal a biologically important mechanism employed by 
Pol II to limit the burden of lesion-arrested transcription and transcriptional mutagenesis 
resulting from endogenous oxidative DNA damage.   
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STEROID RECEPTOR RNA ACTIVATOR (SRA) AS A 'BIVALENT' LONG NON-
CODING RNA: INTERACTION WITH MLL AND PRC2 COMPLEXES 
Wongtrakoongate, P. and Felsenfeld, G.   
Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney 
Diseases, NIH, Bethesda, MD  
 
Steroid Receptor RNA Activator (SRA) is the first identified long non-coding (lnc) RNA which 
is involved in transcriptional activation of steroid hormone responsive genes via a direct and 
specific interaction with the RNA helicases p68/p72 together with other coactivator complexes. 
Recently, SRA has been shown to directly associate with two nuclear receptors, i.e. estrogen and 
androgen receptors. However, little is known about how SRA controls gene expression and how 
the lncRNA might integrate its co-activation activity with epigenetic mechanisms. We have 
previously shown that SRA is present in the complex with the chromatin insulator CTCF, and 
that CTCF and the RNA helicase p68 form a complex in vivo. Here, we show that the lncRNA 
SRA can pull down CTCF and the cohesin component SMC1A from nuclear extract. However, 
the association between CTCF and SRA is indirect, which might be mediated by p68. Using 
chromatin isolation by RNA purification technique, we find that the lncRNA SRA is present at 
promoter regions of previously characterized SRA activated or repressed genes. Many of these 
sites are also occupied by p68, suggesting that SRA is a functional partner of p68 at these target 
genes. The RNA pulldown assay also reveals not only a direct interaction between SRA and p68 
as previously described, but also a direct binding between the lncRNA and the trithorax and 
polycomb complexes MLL and PRC2, respectively. Further, co-immunoprecipitation 
experiments indicate that a single SRA molecule can recruit both the MLL and PRC2 complexes. 
In addition, a genome wide analysis shows that the majority of genomic regions which are 
occupied by p68, are co-bound by histone H3 lysine 4 trimethylation (H3K4me3) in HeLa cells. 
Moreover, p68 binding is also observed at many loci having both H3K4me3 and H3K27me3 
marks which, when present together, are indicative of bivalent domains. Taken together, this 
study suggests that SRA might act as a 'bivalent' lncRNA by directly scaffolding two distinct 
epigenetic machineries involving methylation of histone H3 lysine 4 and lysine 27.   
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IDENTIFICATION OF THE HISTONE H2A REPRESSION DOMAIN AS A 
REGULATOR OF H3K79 METHYLATION AND TRANSCRIPTION ELONGATION IN 
YEAST 
Wozniak, G.1 and Strahl, B.D.2   
1Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, 
Chapel Hill, NC; 2Department of Biochemistry and Biophysics, University of North Carolina at 
Chapel Hill, Chapel Hill, NC  
 
Histone ‘cross-talk’ represents a fundamental way by which histone post-translational 
modifications (PTMs) regulate the structure and function of chromatin. Here we show in the 
budding yeast Saccharomyces cerevisiae that a H2A N-terminal region referred to as the H2A 
repression (HAR) domain is important for trimethylation of H3K79 (H3K79me3). Consistent 
with a recently published report, we also find that the HAR domain regulates mono-
ubiquitylation of H2BK123 (H2BK123ub1) which, as we show for H3K79me3, is a regulatory 
pathway observed across multiple genetic backgrounds. This was in contrast to the previously 
reported regulation of H3K4 trimethylation by the HAR domain, which we find restricted to a 
particular genetic background. We further show that the HAR domain promotes H3K79me3 by 
maintaining wild-type levels of H2BK123ub1, but this mechanism is independent of recruitment 
of the H2B ubiquitylation machinery to chromatin. Finally, we provide genetic evidence that the 
HAR domain contributes to telomeric silencing and the process of transcription elongation 
consistent with the established role of H2BK123ub1 in these processes. In sum, these data 
highlight a 'cross-talk' pathway involving the H2A tail that governs H2B ubiquitylation and H3 
methylation in the process of transcriptional regulation.   
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PHOSPHORYLATION STATUS OF ASCL1 REGULATES NEUROBLASTOMA SELF-
RENEWAL AND DIFFERENTIATION 
Wylie, L.A.1,2, Cheng, K.1, Thiele, C.J.2 and Philpott, A.1   
1Department of Oncology, University of Cambridge, Cambridge, UK 2Pediatric Oncology 
Branch, CCR, NCI, Bethesda, MD  
 
Neuroblastoma (NB) is a tumor of infancy that accounts for 15% of all pediatric cancer 
mortality. NB bares striking similarity to undifferentiated neuroblasts of the sympathetic nervous 
system in gene expression profiles and histological appearance. In most neuroblastoma tumors, 
the cell cycle is hyperactive due to overexpression of cyclin D1 and amplification of MYCN. 
However, retinoic acid (RA) induces differentiation and cell cycle exit of some NB cell lines in 
vitro and provides significant benefit to patients in the clinic. As neuroblastoma appears to result 
from sustained proliferation and inhibition of differentiation, we sought to understand how cell 
cycle and differentiation are linked within NB. We focused our efforts on Ascl1, a proneural 
transcription factor that is both necessary and sufficient for neural differentiation of 
noradrenergic neurons and has been shown to be regulated by the cell cycle. Paradoxically, 
Ascl1 is both highly expressed and associated with poor prognosis in NB. However, we 
hypothesized that Ascl1 phosphostatus critically regulates its ability to induce differentiation. We 
show that Ascl1 is highly expressed and phosphorylated across multiple NB cell lines and is 
largely phosphorylated by CDKs. Phosphorylated Ascl1 actively promotes the G1-S transition by 
upregulating E2f, Skp2, and Cdk2. These targets all promote CDK activity, further maintaining 
Ascl1 phosphorylation. However, a phosphomutant form of Ascl1, where putative CDK sites are 
mutated, arrests cells in the G1 phase by preferentially upregulating Ebf3 and p27. These targets 
inhibit CDK activity promoting Ascl1 dephosphorylation and further upregulation of Ebf3 and 
p27. We propose a model whereby Ascl1 sits between two positive feedback loops, both forming 
a critical link between cell cycle and differentiation, but also as an agent to commit cells to either 
a self-renewing undifferentiated state or a postmitotic differentiated state. Given this model, we 
hypothesized that pharmacologic inhibition of CDK activity when combined with a pro-
differentiation agent such as RA would synergistically cause differentiation in neuroblastoma. 
Indeed, CDK inhibitor and RA combination treatment causes increased differentiation in RA-
susceptible cell lines and induces differentiation in RA-resistant cell lines. Given that most 
neuroblastoma tumors have an overactive cell cycle and also highly express Ascl1, combination 
therapy of CDK inhibitor and RA may provide generalized benefit to NB patients.   
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LINKING EPIGENETIC REGULATORS EZH1 AND EZH2 TO NON-ALCOHOLIC 
FATTY LIVER DISEASE (NAFLD) 
Yu, J.H.1, Bae, W.K.2, Kang, K.1 and Henninghausen, L.1   
1Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and 
Kidney Diseases, NIH, Bethesda, MD; 2Division of Hematology-Oncology, Department of 
Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea   
 
Epigenetic mechanisms of nuclear chromatin remodeling are increasingly recognized as crucial 
factors in the pathophysiology of NAFLD. Polycomb group members Ezh1 and Ezh2 are 
important key epigenetic regulator of embryonic stem cell identity, but their role in NAFLD is 
poorly understood. We studied the function of the histone methyltransferases Ezh1 and Ezh2 in 
NAFLD development using mice with germ-line and hepatocyte-specific gene deletions, 
respectively. Germline Ezh1-null (-/-) and hepatocyte-specific Ezh2-null (f/f;AC) male mice 
were examined at 3 and 8 months of age using histology, liver enzyme tests, RNA-seq and Chip-
Seq analyses for H3K4me3 and H3K27me3. Ezh1 ablation induces steatosis. Expression of 
genes associated with lipogenesis was higher in Ezh1-null mice compared to wild-type mice. In 
Ezh1&2 double knockout (DKO) mice steatohepatitis was accompanied by the development of 
fibrosis. This was correlated by pronounced loss of H3K27 trimethylation, and accompanied by 
increased levels of oxidative stress enzymes and collagen-related genes in livers of Ezh1&2 
DKO mice. These results reveal a previously unknown function of EZH1 and EZH2 in 
regulating NAFLD and strongly suggest that epigenetic regulation may be a determining factor 
to susceptibilities to NAFLD.   
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CHROMATIN DYNAMICS IN HEMATOPOIESIS REVEAL CONCOMITANT 
ACTIVATION OF TISSUE-SELECTIVE ENHANCERS WITH LIMITED LINEAGE 
SPECIFICITY 
Zang, C.1, Luyten, A.2, Liu, X.S.1 and Shivdasani, R.A.2,3   
1Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and 
Harvard School of Public Health, Boston, MA; 2Department of Medical Oncology, Dana-Farber 
Cancer Institute, Boston, MA; 3Departments of Medicine, Brigham & Women’s Hospital and 
Harvard Medical School, Boston, MA  
 
Multilineage progenitors establish lineage-specific transcriptional programs to engender cell 
diversity. Transcription factors such as GATA1 and PU.1 specify blood lineages, but it is unclear 
when chromatin at lineage-restricted cis-elements becomes fully permissive for transcription. 
Using ChIP-seq to profile histone marks, we studied enhancer dynamics during differentiation of 
primary mouse blood stem, progenitor, and specified cells. Enhancers functional in single cell 
types showed stably positioned H3K4me2- and H3K27ac-marked nucleosomes and DNase 
hypersensitivity in sibling lineages. Thus, epigenetic states near binding sites for lineage-
restricted transcription factors show surprising overlap in distinct cells. Multipotent progenitors 
showed scant H3K4me2 at enhancers that function in their committed progeny, revealing 
independent consolidation of this mark after cells diverge in ontogeny. Nevertheless, primordial 
enhancer marks in progenitors can explain classical observations on multilineage priming. Our 
findings also suggest a chromatin basis for reprogramming or transdifferentiation and provide a 
framework to understand how TFs interact with chromatin to drive hematopoiesis.   
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PROTEIN LAP2Α INTERACT AND RECIPROCALLY AFFECT THEIR GENOME 
WIDE CHROMATIN BINDING 
Zhang, S.1, Schones, D.2, Malicet, C.1, Rochman, M.1, Zhou, M.3, Foisner, R.4 and Bustin, M.1   
1Protein Section, Laboratory of Metabolism, CCR, NCI, NIH, Bethesda, MD; 2Department of 
Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA; 3Laboratory of 
Proteomics and Analytical Technologies, Advanced Technology Program, SAIC-Frederick, Inc., 
Frederick, MD; 4Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria   
 
Chromatin structure and dynamics are regulated by the combined action of numerous nuclear 
components including that of architectural proteins such as members of the high mobility group 
(HMG) superfamily which bind to nucleosomes without any specificity for the underlying DNA 
sequence. HMGN5, the most recently discovered member of HMGN family, de-compacts 
chromatin by competing with linker histone H1 and modulates the fidelity of the cellular 
transcription profile. To gain additional insights into the mechanisms whereby HMGN5 affects 
chromatin structure and function, we searched for HMGN5-interacting components using the 
HALO-TAG pull down assay. This approach led to the identification of Lamina-associated 
polypeptide 2 alpha (LAP2 alpha) as a new HMGN5 interacting protein. We found that LAP2 
alpha interacts with HMGN5 both in-vitro and in-vivo. Fluorescence recovery after 
photobleaching analysis in living cells lacking HMGN5 reveals that the protein affects chromatin 
binding of LAP2alpha. Chromatin immunoprecipitation followed by high-throughput sequencing 
(ChIP-seq) indicates that HMGN5 and LAP2 alpha co-localized in the promoter region of 
numerous genes. Significantly, loss of either HMGN5 or LAP2 alpha resulted in dramatic 
redistribution of the other protein on chromatin without disrupting global chromatin structure. 
Our studies reveal a cross-talk between a nucleosome binding protein and a nuclear lamina 
binding protein and provide additional insights into mechanisms whereby the nuclear lamin 
network regulates chromatin function.   
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IMPROPERLY REPROGRAMMED IN HUMAN INDUCED PLURIPOTENT STEM 
(iPS) CELLS 
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G.E.2 and Lieb, J.D.1 
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Carolina, Chapel Hill, NC; 2Duke University, Durham, NC; 3The Lieber Institute for Brain 
Development, Baltimore, MD; 4Case Western Reserve University, Cleveland, OH   
 
Adult mammalian somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by 
manipulating the expression of defined transcription factors. Induced pluripotent cells are similar 
to embryonic stem cells (ESCs) in many respects, but are also reported to have altered 
differentiation potential, different DNA methylation patterns and a different spectrum of copy 
number variations (CNVs). The biological significance of those dissimilarities in iPSCs is 
largely unknown. Reprogramming involves conferring iPSCs with ESC-like chromatin 
characteristics. It is still unclear how completely the chromatin structure in iPSCs is 
reconfigured, and if any imperfections are functionally relevant. We mapped DNase 
hypersensitive (DHS) sites in nine samples: three human Embryonic Stem Cell (ESC) lines and 
three human iPS cell lines with their matched parental fibroblast cells. DHS identify regions of 
nucleosome eviction and regulatory factor binding to DNA, also called ‘open chromatin’. 
Genome-wide, ~95% of DHS sites were shared, but there were ~5000 sites with different open 
chromatin profiles. Among the 50 genes with the highest density of differential DHS sites, we 
find a striking enrichment of loci encoding key transcription factors that function in early 
embryonic development. Interestingly, the RNA levels of most of these genes is 
indistinguishable between ES and iPS cells themselves, but many have different expression 
profiles in iPSs versus ES cells upon the induction of differentiation. Our results suggest that the 
altered chromatin architecture in iPS cells foreshadows their development potential.   
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