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Introduction 

An ideal method to prevent chronic GVHD (cGVHD) after 

allogeneic hematopoietic cell transplantation (HCT) 

would remove the donor cells that cause cGVHD from 

the graft or allow them to attain operational tolerance of 

recipient alloantigens that cause cGVHD, such that 

systemic immunosuppression is no longer necessary. 

Recent studies have demonstrated substantial progress 

in preventing cGVHD, but this goal has not been fully realized because the underlying 

mechanisms that incite cGVHD are only partially known. Identification of the mechanisms that 

incite cGVHD in humans remains a challenge because at least 1 year of follow-up after HCT is 

needed to ascertain the development of cGVHD.   

Mechanistic data strongly suggest distinct pivotal post-HCT cGVHD-inducing events 

involving certain donor T and B cell subsets and monocytes and recipient fibroblastic reticular 

cells. The evidence is derived from experiments using murine models and from studies of patient 

samples. Chronic GVHD may be prevented by removing certain activated donor lymphoid 

populations, albeit with immune consequences. The antigens that trigger cGVHD and GVT activity 

differ from those involved in pathogen defenses, but the extent of overlap and non-overlap 

between cGVHD and GVT-related antigens is not known. Pathogen-related antigens activate 

naïve cells that mature to effectors that clear the pathogen and establish a reservoir of memory 

cells for future defense. Pathogen-related antigens are typically cleared, but the recipient 

alloantigens that trigger cGVHD and GVT activity generally persist. The extent to which differences 

in functional responses between cGVHD and GVT activity and pathogen defense could be 

exploited to prevent cGVHD while preserving GVT activity and pathogen defenses is not known. 

This report reviews our current understanding of the etiologic factors, identifies knowledge gaps, 

Consensus Key Point: Moderate to 
severe cGVHD leads to excess 
morbidity and mortality and should be 
prevented.  
 
o Despite the advent of effective 

cGVHD prevention strategies, 
further scientific and clinical 
research is needed. 

o T-cell depletion strategies 
decrease the risk of cGVHD but can 
also impair immune reconstitution 
and anti-anti-tumor effects after 
HCT. 
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and suggests cellular targets and mechanisms relevant to benefits and risks in the design of 

clinical trials to prevent cGVHD.  

 
Methods  

Each working group was organized to encourage global engagement in the topic (see introduction 

to the series). Four groups worked individually beginning in February 2020 to review the relevant 

literature and prepare the initial draft of the manuscript.  The Steering Committee reviewed and 

discussed the initial draft and offered recommendations for revisions. Two iterative rounds of 

comments and revisions were collected before the November, 2020 Consensus Conference. The 

manuscript was further revised for submission after additional suggestions from external 

reviewers, virtual Conference participants, and a 30-day public comment period. 

 

I. Primary Insults – Immune cell-driven etiology of chronic GVHD and potential points of 

intervention  

Donor, recipient, and exogenous factors contribute to cGVHD genesis, and dynamic interactions 

between these factors and secondary insults lead to a final common pathway for developing 

cGVHD.1 Studies in murine models2, 3 and humans4 indicate that events leading to cGVHD begin 

with tissue injury from the pretransplant conditioning regimen, which amplifies responses to 

alloantigens that trigger acute GVHD (aGVHD). Strategies that effectively reduce the risk of 

aGVHD, however, have not necessarily reduced the risk of cGVHD and vice versa, highlighting 

the need for further elucidation of the mechanisms that determine these outcomes.  Approximately 

30% of patients develop cGVHD with no prior overt aGVHD, either through a subacute graft-

versus-host reaction or undefined independent mechanisms.5  Better understanding of functional 

correlates and molecular drivers of immune cell subsets that mediate cGVHD is needed. Flow 

cytometric analyses alone cannot distinguish the cells that cause cGVHD from those that prevent 

graft rejection, mediate GVT activity and control infections.6 Eliminating or blocking alloreactive T 
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cells before or early after HCT can prevent cGVHD, but this benefit can be offset by increased 

risks of graft rejection, recurrent or progressive malignancy, and opportunistic infections due to 

delayed immune reconstitution.  

A working model of cGVHD development guides our approach to cGVHD prevention. Graft 

engineering prior to HCT and in vivo T cell depletion with ATG or cyclophosphamide remain areas 

of active investigation. Additional targets include B cells and monocytes. Data suggest that the 

risk of cGVHD is decreased by using younger donors, avoiding female donors for male patients, 

and by using cord blood grafts7 and by using aspirated  marrow cells instead of growth factor-

mobilized blood cells.8  Thus, donor selection serves as another point of intervention, which may 

become increasingly relevant as outcomes improve with alternative donor sources. Figure 1 

shows a working model of cGVHD inciting factors along with several potential points of clinical 

intervention that require further study. 

 

Donor T cells subsets 

Pre-transplant graft engineering remains an area of 

active investigation in cGVHD prevention since 

conventional/effector alloreactive T cells (Tcon/Teff) 

are critical for inciting and mediating cGVHD.  

Evidence suggests that subclinical pathogenic 

processes begin long before the distinct clinical 

manifestations of cGVHD become apparent. Our 

understanding of human cGVHD etiology is largely 

based on data derived from in vivo and ex vivo graft manipulation trials to prevent of acute GVHD 

(Table 1, perhaps better as a supplement). Clinical studies demonstrate that donor T cell dose is 

a major risk factor for the development of cGVHD. T cell depletion approaches have decreased 

the cGVHD incidence from 30% (bone marrow) and 50% (peripheral blood), to 10-40% for overall 

Consensus Key Point: Primary inciting 
cellular and molecular pathways leading to 
cGVHD arise from donor and host factors 
and are triggered early after HCT.  
 
Points of Intervention – Mitigation of Risk 
Factors for cGVHD Development  
o Graft engineering strategies 
o Modified schedules for weaning 

immunosuppression after HCT  
o Protection of secondary lymphoid 

organs (SLO) 
o Maintaining balance between 

immune effector cells and immune 
regulatory cells 
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cGVHD and 10-20% for moderate and severe cGVHD.9-14 These data are consistent with results 

showing that both allogeneic donor T cells and recipient alloantigens are necessary to develop 

cGVHD in murine models.15   

Data in cGVHD and in other immune-mediated diseases have identified functionally 

distinct T cell subsets. Proinflammatory effector or conventional T (Teff/Tcon) cell subsets incite 

cGVHD, while other anti-inflammatory subsets such as regulatory T cells (Treg) attenuate disease. 

Initial approaches to induce apoptosis of rapidly dividing T cells early after HCT with 

methotrexate16 did not ameliorate cGVHD. Greater success was achieved with approaches that 

deplete donor T cells via CD34 selection or alpha-beta T cell depletion or naïve T cells from the 

graft or use rabbit ATG in the conditioning regimen or high-dose cyclophosphamide after HCT to 

deplete donor T cells in vivo (Table 1).9-13, 17-33 One unanswered question is why the incidence 

and severity of cGVHD are lower with umbilical cord blood (UCB) grafts than with marrow or 

mobilized blood cell grafts from older donors, even though UCB T cells are immunologically naïve. 

These results  suggest that UCB contains fewer pathogenic Teff/Tcon or a greater proportion of 

Treg cells, a question that deserves further investigation.13, 34-36  Th17 cells also appear to have a 

role in the etiology of cGVHD.37  

Collectively, these data strongly suggest that the pathogenic T cells that initiate cGVHD 

are present at the time of stem cell infusion, even though clinical manifestations of cGVHD appear 

a year or more later. Removing these cells is currently an attractive approach, but as we further 

refine our understanding of the key T-cell subsets and their phenotypic profiles, more targeted 

approaches may be possible. The balance of Treg vs Teff/Tcon cells has a major role in the 

development of cGVHD. Treg/Teff ratios are low at the onset on cGVHD, and low ratios in patients 

without cGVHD predict a high future risk of cGVHD.38, 39 Accordingly, adoptive transfer of ex-vivo-

expanded Treg or in-vivo expansion mediated by low-dose IL-2 could decrease the risk of 

cGVHD.40-44 Similarly, post-transplant cyclophosphamide (PTCy) depletes alloactivated Teff/Tcon 

with relative sparing of Treg.  Adoptive transfer or in-vivo expansion of invariant natural killer T 
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cells (NKT) may offer benefit, since the low numbers of these cells have been associated with low 

numbers of Tregs, aberrant immune recovery and an increased risk of cGVHD.45-47 These 

approaches could reduce the risk of cGVHD while minimizing the risk of adverse effects.  

 

Donor B cell subsets 

The presence of allo- and autoantibodies in patients with 

cGVHD suggests a pathogenic role for B cells, and 

results from murine models have shown that antibody-

producing B cells contribute to the disease48, 49 and are 

necessary under in some models.48, 50-52 How antibodies 

mediate cGVHD is an area of active investigation.  One 

mechanism involves damage caused by antibody 

binding to thymic epithelial cell antigens.50 The putative efficacy of B cell-depleting agents such 

as rituximab for treatment of cGVHD further suggests that pathogenic B cells contribute to clinical 

cGVHD.53-55 Two prophylaxis studies have suggested that in vivo depletion of CD20+ B cells at 2-

3 months after HCT may decrease the risk of cGVHD.56, 57 Global depletion of CD20+ B cells can 

induce prolonged B lymphopenia in mice and in some patients, resulting in progression of cGVHD 

accompanied by delayed recovery of B cells.46, 56, 58-62 

B cells that incite cGVHD are activated and primed for survival in vivo, suggesting a failure 

of regulation by B cell activating factor (BAFF). BAFF promotes survival and BCR-activation of B 

cells in mice that develop cGVHD (Jia W, Sarantopoulos, under revision at Blood Oct 6 2020). 

Potentially pathological B cells have a lowered B cell receptor (BCR) signaling threshold that 

enables hyper-reactivity.63, 64 The BAFF tolerance checkpoint fails in cGVHD patients because 

levels of BAFF remain high enough to support aberrant B cells.56, 58, 59 These results have refined 

our understanding of these potentially pathogenic B cells and suggest that CD20 may not be the 

optimal target.61 Thus, selective depletion of constitutively activated, alloreactive B cells could be 

Consensus Key Point: Agents that 
target cells that might not be critical in 
GVT reactions, like certain T cell 
subsets, distinct B cell subsets, 
monocytes or host lymphoid organ 
stromal cells represent prime 
candidates for further clinical studies. 
 
Points of intervention to mitigate 
cGVHD development 
o Small molecule inhibitors of 

aberrant B and T cells 
o Antibodies to cytokines  
o Treg and Breg expansion  
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a more effective strategy to reduce the incidence and severity of cGVHD.  Not only could this 

approach attenuate cGVHD, but it would allow immune recovery of a comprehensive, diverse, 

peripheral B-cell compartment under physiologic homeostatic control.64-66 Alternatively, low 

numbers of B regulatory cells (Breg) have been associated with aberrant immune recovery and 

cGVHD,45, 46 suggesting that strategies to expand these cells in vivo could decrease the risk of 

cGVHD 

 

Donor monocytes/macrophages 

The divers of T cell dysregulation in cGVHD include macrophages, although their role in humans 

has been difficult to investigate. Results from murine models of pulmonary cGVHD have supported 

a significant role for donor-derived alternatively activated macrophages (M2) that drive Th2- and 

Th17-cell activation.67  

 

Recipient fibroblastic reticular cells 

Certain recipient stromal cells with immune functions in secondary lymphoid organs (SLO) have 

a role in the etiology of cGVHD. In mice, lymph node damage impairs T and B cell interactions 

through loss of fibroblastic reticular cells (FRC) that are necessary to induce tolerance.3, 68  FRCs, 

and potentially other recipient stromal cells, can also incite cGVHD via Notch ligand interactions 

that lead to aberrant activation of lymphocytes.49, 69, 70 In patients with cGVHD, SLO damage is 

suggested by the high numbers of circulating follicular T and B cells, and post-GC plasmablast-

like cells that typically reside in SLO.71 These CD4 T follicular helper (Tfh) cells interact with B 

cells, leading to increased plasma cell-like activation in active clinical cGVHD.72 Whether the risk 

of cGVHD could be averted or diminished by optimizing the function of these primary and 

secondary lymphoid organs is unknown, although the co-occurrence of immune recovery with 

restoration of primary and secondary lymphoid organ function and development of operational 

tolerance supports this possibility.45, 46, 73 
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Studies of murine models have shown that interactions between FRCs and B cells in 

recipient lymphoid organs may cause cGVHD.49 FRCs are increased in number early after 

transplant and they have increased BAFF transcription (Jia, W under revision at Blood). FRCs 

promote cGVHD because they are defective in their capacity to present tissue antigens.3 Other 

myofibroblasts are pathologically activated in cGVHD74 and may incite pathways leading to 

cGVHD. The clear association of cGVHD with the level of recovery of certain immune cell 

subsets58 strongly supports a need to move beyond cell surface phenotyping and enumeration of 

blood cells toward in-depth studies of interactions in recipient primary and secondary lymphoid 

organs. 

 

II. Secondary Insults in cGVHD – Damage and dysfunction of recipient immune tissues and 

organs in cGVHD development and potential points of intervention 

Loss of immune tolerance in patients with de novo autoimmune diseases is affected by age and 

infections. In HCT recipients, tissue damage from the conditioning likely induces cGVHD through 

antigen exposure and presentation, with damage propagated by infection, microbiome disruption, 

and loss of oral and gastrointestinal mucosal integrity.75 Tissue signals drive recipient alloantigen 

presentation in murine models, inciting the aberrant activation cascade that leads to cGVHD.2 

Approaches to minimize tissue injury in the preparative regimen with agents such as c-kit antibody 

could mitigate this contribution to cGVHD.76 

 

Recipient thymic epithelial cell dysfunction 

Impaired thymopoiesis is highly associated with cGVHD.77 The thymus incurs damage from the 

preparative regimen, immunosuppressive medications and donor T cells.50 In murine models, 

thymic damage impairs negative selection by medullary epithelial cells, permitting autoreactive 

donor-derived recent thymic emigrant T cells to target recipient tissues and mediate cGVHD.15 

AIRE dysfunction and loss of intrathymic group 3 innate lymphoid cells contribute to failure of 
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negative selection.78, 79 The extent to which this mechanism applies in human HCT is not known. 

In contrast, studies of human blood samples have shown that T cell reconstitution after HCT is 

derived primarily from expansion of mature T cells in the graft that have a restricted TCR 

repertoire, with far less contribution from marrow-derived cells that differentiate in the thymus.  

These T cells have a restricted TCR repertoire and little evidence of thymic derivation as indicated 

by the presence of T receptor excision circles and small thymic size by radiographic  imaging.39, 

80-84  These results suggest that lack of thymic recovery and failure to generate a diverse thymic-

derived naïve T cell repertoire could contribute to lymphoid dysregulation in the etiology of cGVHD.  

The lower cGVHD rates in children compared to adults raise the question of whether thymic 

recovery could have a protective effect by maintaining effective negative selection and robust 

production of Treg cells.77, 85-90 

Experiments with murine models have supported a role for androgen withdrawal, IGF-1 

and keratinocyte growth factor (KGF) in thymic recovery.90-93 These results have motivated trials 

to test whether androgen suppression, IGF-1 supplementation and keratinocyte growth factor can 

decrease the risk of cGVHD. Results with KGF have not been encouraging,94 and results with 

other agents have not been reported. 

 

Non-immune organ tissue Damage and cGVHD 

Development 

Certain exogenous events can be considered second 

insults that incite cGVHD by damaging recipient tissues 

post-HCT, and may be necessary steps for certain forms 

of cGVHD. In damaged tissues, the release of damage-associated molecular patterns (DAMPs) 

can trigger a proinflammatory microenvironment that leads to presentation of alloantigens or neo-

autoantigens and intracellular antigens that are normally sequestered from the immune system.95  

Tissue damage related to viral and other infections may incite cGVHD.  CMV and HSV reactivation 

Key Consensus Point: Secondary 
insults may occur at any time after 
HCT. 
 
Develop Risk Mitigation Strategies 
based on second insults leading to 
cGVHD 
o HLA matching and other genetic 

risk factors 
o Infection prevention 
o Tissue damage prevention  
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have been linked to cGVHD96, 97 and anti-viral prophylaxis may offer some protection against 

cGVHD. Pre-transplant decreased surfactant, likely due to injured epithelia, confers an increased 

risk of lung GvHD.98, 99 Elevated collagen type V, a marker of alveolar epithelial injury, has also 

been linked to active pulmonary cGVHD.100-102 Collectively, these examples support studies of 

agents that promote tissue repair and decrease the impact of viral infections early after HCT.  

Data regarding the association of dental hygiene and oral health with the risk of oral 

cGVHD are limited. Periodontal disease leads to both gingival inflammation and breakdown. In 

one study, oral microbiome changes were associated with oral cGVHD.103-105 Likewise, loss of 

gastrointestinal microbial diversity has been linked to GVHD.106-108 These data support studies that 

address the interaction between specific tissues and the local microbiome on cGVHD 

development.106 

Factors that incite sclerotic skin and connective tissue manifestations of cGVHD remain 

less well known. The association of sun exposure and local mechanical stress with focal 

cutaneous manifestations of cGVHD suggest that recipient tissue responses may contribute to 

development of the disease. Further understanding of mechanisms leading to these outcomes will 

potentially lead to improved understanding of inciting events in cGVHD.  

 

III. Based on what we know about cGVHD etiology, 

how might we assess risk of cGVHD development?  

Balancing the risks of moderate or severe cGVHD versus 

the risks of graft rejection, delayed immune reconstitution 

and recurrent or progressive malignancy poses a key 

issue in designing trials to prevent cGVHD. As described 

in Figure 2, important considerations balance the benefit 

and risks of interventions at each time point after HCT. 

While lower intensity of the conditioning regimen may 

Consensus Key Point: For patients with 
hematological malignancies, a risk 
assessment model for moderate-
severe cGVHD must consider possible 
effects of the study intervention on the 
risk of recurrent or progressive 
malignancy when designing clinical 
trials. 
 
Points of intervention to mitigate 
cGVHD development 
o Develop risk stratification tools to 

guide clinical trial design 
o Consider interventions that serve 

dual purposes by targeting both 
cGVHD and malignant cells in the 
recipient 
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decrease the magnitude of tissue damage that might trigger cGVHD, it could also increase the 

risk of relapse. Interventions that decrease the numbers, activation or survival of donor T cells 

could decrease the risk of cGVHD but could also decrease their ability to prevent graft rejection 

and recurrent or progressive malignancy. Highly intensive immunosuppressive regimens could 

decrease the risk of cGVHD but could also delay immune recovery, increase susceptibility to 

infections, and possibly increase the risk of recurrent or progressive malignancy. Although 

interventions to prevent cGVHD could increase the risks of graft rejection, delayed immune 

reconstitution and opportunistic infections, effects on the risk of recurrent or progressive 

malignancy pose the most significant consideration in trial design.     

 

IV. How do we best consider risk of recurrent or progressive malignancy as we consider 

prevention of cGVHD? Several large studies have shown potent GVT effects associated with the 

presence of cGVHD by NIH criteria and an increased risk of recurrent or progressive malignancy 

in patients who did not develop cGVHD.109-111 Mild cGVHD has been associated with improved 

overall survival, while moderate or severe cGVHD has been associated with an increased risk of 

non-relapse mortality.112, 113 During the first 18 months after HCT, patients without cGVHD who 

continued immunosuppressive medications had the highest risk of relapse.110 Beyond 18 months 

after HCT, patients who did not experience cGVHD showed the highest risk of relapse even 

thought they had discontinued all immunosuppressive medications, but treatment with 

immunosuppressive medications had no effect on the risk of relapse in patients who experienced 

acute or cGVHD.110  

Some of the therapeutic interventions with the greatest effect in preventing cGVHD have 

been associated with high relapse rates (Table 1). In addition, many studies have shown that the 

magnitude of GVT effects differ according to disease type and disease status.111, 114 Some 

evidence suggests that myeloid malignancies are more immunogenic and responsive to GVT 

activity, but further studies are needed to determine the extent of differences in susceptibility to 
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GVT activity between different diseases. When evaluating the potential success of an intervention 

to prevent cGVHD, it is imperative to consider risk stratification for recurrent or progressive 

malignancy in the eligibility criteria.  The presence or absence of measurable residual disease 

(MRD) in the marrow of patients with acute leukemia at the time of HCT has a major effect on the 

risk of relapse after HCT and should be taken into account in designing clinical trials to prevent 

cGVHD. One approach of great interest would be to test agents that could simultaneously target 

malignant cells and cGVHD.115  

 Emerging data suggest that adoptive transfer of certain NK subsets 116 or invariant NKT117 

or gamma delta T cells118 could minimize the risk of cGVHD while preserving GVT benefits. Future 

studies should focus on testing whether these lymphocyte populations could be used to prevent 

cGVHD without impairing GVT activity. 

 

V. Critical questions and answers about cGVHD 

prevention trials 

The selection of interventions and approaches to test for 

prevention of cGVHD should be based on an 

understanding of the underlying mechanisms that initiate 

the processes leading to development of cGVHD, along 

with consideration of possible off-target effects and the 

impact on immune reconstitution after HCT. The following sections address three critical questions 

that should be considered in the design of trials testing new approaches to prevent cGVHD. 

 

1) What preventive agents and approaches are most promising? 

The key considerations include the strength of the efficacy data for the cGVHD intervention or 

approach versus the influence on other HCT outcomes, including prevention of graft rejection, 

viral infections and recurrent or progressive malignancy (i.e., relapse). 

Consensus Key Point:  Integrate 
studies of patient samples, to include 
potential use of high throughput 
“multi-omic” approaches in a systems 
immunology approach to aid in 
cGVHD risk stratification  
 
Points of intervention to mitigate 
cGVHD development 
o Use translational data to identify 

populations at high risk of cGVHD  
o Use translational data to identify 

novel targets 
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Approaches that prevent cGVHD without impairing immune function would be ideal. 

Alternatively, selecting agents that could simultaneously target tumors and dysregulated 

alloreactivity might mitigate any effect on the risk of relapse. To understand the influence of an 

investigational product or approach on relapse, it will be crucial to document the underlying risk of 

relapse as accurately as possible. In patients with acute leukemia, the presence of MRD at the 

time of HCT reflects not only residual disease burden but also disease sensitivity to prior therapies, 

and thus can be the single strongest predictor of relapse after HCT.119, 120 Most reports of cGVHD 

prevention trials have not included information about the presence or absence of MRD at the time 

of HCT (Table 1). Including this, and other information such as disease risk index (DRI) will be 

important to understand the impact of specific approaches on the risk of relapse.121 It may be 

possible to refine graft engineering approaches as we begin to understand the mechanisms 

leading to cGVHD. Alternatively, modification of current graft engineering approaches might 

improve the risk/benefit ratio, for example, by targeting the dose of ATG to the absolute 

lymphocyte count,122 adjusting the numbers of T cells in the graft, and the timing of in-vivo cell 

depletion or expansion strategies and adoptive transfer strategies, or ways to improve outcomes 

with cord blood grafts. In addition, altering other aspects of the trial, for example, by increasing 

tumor control through another avenue, may also enhance outcomes while minimizing the risk of 

cGVHD. 

 

2) Who should be enrolled in cGVHD prevention trials? 

Trial inclusion and exclusion criteria should enrich for patients at high risk of moderate-severe 

cGVHD and exclude those at high risk of graft failure, infections, and relapse. Prevention trials 

can provide benefit only for the unknown subset of patients who would otherwise develop cGVHD.  

This potential benefit should be carefully weighed against the likelihood that the study intervention 

could increase the risks of graft rejection, viral reactivation, delayed immune recovery and 

recurrent or progressive malignancy that apply to all participants (Figure 3). Eligibility criteria 
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should be designed to include patients at high risk of cGVHD and to exclude patients at high risk 

of complications that could be caused by the study intervention. Selecting patients with non-

malignant diseases would obviate the risk of  relapse, but most patients have malignant diseases. 

Patients with malignant diseases should be included in prevention studies after careful 

consideration of the relapse risk. Children should be considered separately in assessing the 

risk/benefit ratio, because the risk of cGVHD is much lower than in adults. Future eligibility criteria 

could include biomarkers that have a high positive predictive value for development of cGVHD. If 

the risk of a study intervention is low, enrollment of patients with a low risk of developing cGVHD 

may be justified. If the risk of the study intervention is high, however, enrollment of patients with a 

low risk of developing cGVHD may not be justified. Developing prognostic models that quantitate 

these risk/benefit ratios based on existing data is a high research priority (Table 2). 

 

3) What are the most appropriate endpoints in cGVHD prevention trials? 

3.1) Primary efficacy endpoint 

In pivotal cGVHD prevention trials intended for regulatory review, survival without moderate or 

severe NIH-defined cGVHD (cGVHD-free survival) should serve as the primary endpoint. Results 

for this endpoint have been reported in only one study.12 In this randomized prospective study that 

compared standard of care prophylaxis with or without added ATG, the rate of moderate or severe 

cGVHD-free survival at 2 years was 44% (95% CI, 34% to 52%) in patients who received standard 

post-transplant immunosuppression with tacrolimus and methotrexate and 48% (95% CI, 38% to 

58%) in the ATG group.12 Cumulative incidence estimates of moderate or severe cGVHD are not 

appropriate as the primary endpoint, because they can be decreased by a high incidence of death 

as a competing risks (i.e., death from relapse). Chronic GVHD requiring systemic treatment could 

serve as a functional endpoint definition instead of moderate to severe cGVHD, although this 

endpoint depends on providers’ medical judgment regarding the need for systemic treatment, 

which could be biased. We recommend assessing the primary endpoint at one year after HCT in 
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prevention trials because most of cGVHD develops within one year, but longer follow-up would be 

highly desirable for some secondary endpoints. 

In earlier phase studies, an endpoint that captures an effect linked to cGVHD prevention 

would be appropriate as a primary endpoint. For example, if an intervention is intended to increase 

the number of Tregs or to improve their function as a way to prevent cGVHD, an early phase trial 

could be designed around these immunological endpoints, provided that the linkage to prevention 

of cGVHD is strong.  

 
 
3.2) Composite endpoints 

Composite endpoints such as cGVHD-free, relapse-free survival (CRFS) or GVHD-free, relapse-

free survival (GRFS) have gained popularity as a way of assessing the overall success of HCT. 

Composite endpoints are most appropriate as secondary endpoints because the onset of failure 

events other than cGVHD (i.e. relapse, death, and severe acute GVHD) can confound the 

interpretation of the most relevant failure event (i.e., cGVHD). GRFS is appropriate if it is 

anticipated that the study intervention is likely to decrease the incidence of both acute and chronic 

GVHD. For cGVHD prevention studies, CRFS is preferred.  In all studies, separate reporting of 

each component in composite endpoints and tabulation of the causes of death are needed to 

understand the benefits and risks of the study intervention. 

 

3.3) Interpretation of results 

Pivotal studies intended for regulatory review must be adequate and well controlled, generally by 

comparing results in the investigational arm versus randomized placebo concurrent controls, no 

treatment concurrent controls, active treatment concurrent controls or pre-specified historical 

controls (21CFR§314.126). 

To gain efficiency, trials with more than 2 arms can be designed to compare multiple 

investigational arms against a single control arm. The major disadvantage of this approach is that 
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large numbers of patients are needed to compare the investigational arms against each other, 

making it difficult to complete them in a timely manner. Another disadvantage is that enrolled 

patients must be able to receive any of the study interventions, potentially excluding some patients 

who have contraindications to only one of the study arms. Single arm designs may be appropriate 

for phase 2 studies, but the interpretation of results is currently limited by the lack of validated risk 

stratification criteria and benchmarks for the probability of survival without moderate or severe 

cGVHD. Therefore, randomization may be preferred for phase 2 studies, if feasible. Participants 

in trials to prevent cGVHD should generally not co-enroll in trials to prevent other major 

complications such as relapse, unless stratification is used to balance the study arms in a 

randomized trial.   

The most appropriate control arm in cGVHD prevention trials is the standard of care when 

the trial is designed.  Retrospective and prospective studies are needed to develop pre-transplant 

risk stratification for the incidence of moderate or severe cGVHD with standard of care treatment 

regimens, thereby informing the eligibility criteria for future trials. Studies are also needed to 

provide benchmarks for the probability of survival without moderate or severe cGVHD, thereby 

informing the design and interpretation of results in future trials. 

 

SUMMARY 

Below we summarize recommendations for studies over the next 5 years 

1.  Elucidate the inciting cellular and molecular pathway determinants of immune operational 

tolerance after HCT.   

1.a. Use primary patient samples and murine models to determine how recipient and donor 

characteristics incite or attenuate the development of cGVHD. 

1.b. Define roles for recipient tissues and organs in the initiation of cGVHD.  

1.c. Determine how second insults after HCT incite moderate-severe cGVHD. 
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2. Integrate studies of patient samples to include potential use of high throughput “multi-omic” 

approaches in a systems immunology approach to aid in cGVHD risk stratification. 

3. Work toward defining a dynamic individualized risk stratification strategy that predicts risks of 

relapse, graft failure, and viral infections, and balances these against the risk of developing 

moderate-severe cGVHD to identify patients who would most benefit from cGVHD prevention trials. 

4.  Conduct well-designed cGVHD prevention trials based on what we know about the balance 

of benefits and risks to optimize immune reconstitution without impairing GVT activity. 
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Table 1.  Clinical studies that have informed us about potential early points of intervention and about the etiology of cGVHD. 

Approach 
In vivo 
Ex-vivo 

Study 
design 

Cells 
targeted 

Backbone 
GVHD ppx Cohort %MRD+ Donor 

Stem cell 
source (n) 

%Moderate 
to severe* 
cGVHD 

%Any 
cGVHD %Relapse 

%Graft 
failure %OS Ref. 

Anti-CD20 
Alpha/ß 

Ex-vivo Ph1/2 Alpha/ß T, B ATG pre 
Ped./ 
HM/TBI 

Unk Haplo PB (81) 0 0 24 2 71 17 

Anti-CD20 
Alpha/ß 

Ex-vivo Pilot Alpha/ß T, B 
ATG pre, 
CNI ± MTX 

Ped./ 
HM/TBI 

18 Haplo/MUD PB (33) 12 30 30 0 67 18 

Anti-CD20 
Alpha/ß 

Ex-vivo Retro Alpha/ß T, B ATG pre Ped/ NM N/A Haplo PB (14) 21 
Unk 
 

N/A 14 84 
19 
 

Anti-CD20 
Alpha/ß 

Ex-vivo Ph1/2 Alpha/ß T, B 
ATG pre + 
rituximab 

Ped/ NM N/A Haplo PB (23) 0 0 N/A 17 91 20 

ATG vs. None   In vivo  Ph3 ATG rabbit CNI+MTX Adult/ HM Unk MUD/ MRD PB (155) 6 vs. 33 27 vs. 64 32 vs. 26 0 vs, 1 74 vs. 78 10 

ATG vs. None In vivo Ph3 ATG rabbit CNI+MTX Adult/ HM Unk MUD 
PB (164) 
BM (37) 

12 vs. 45 30 vs. 60 33 vs 28 Unk. 55 vs. 43 9, 21 

ATG vs. None   In vivo  Ph3 ATG rabbit CNI+MTX Adult/ HM Unk MUD 
PB (196) 
BM (49) 

12 vs. 33 16 vs.38 32 vs. 21 21 vs. 6 59 vs. 74 12 

ATG vs. None   In vivo  Ph3 ATG rabbit 
CNI+MTX 
or MMF 

Adult/ HM Unk 
MUD/MMU
D 

PB (173) 
BM (23) 

13 vs. 29 22 vs. 33 11 vs 16 3 vs. 2 
74 vs 79 
@6 mo 

11 

ATG vs. None In vivo Ph3 ATG rabbit 
CSP+MTX+
MMF 

Adult/ HM Unk MRD 
BM+PB (101) 
PB (153) 
BM (9) 

8.5 vs. 23 28 vs. 53 21 vs. 15 0 vs. 0 69 vs. 70 22 

AntiCD45RA
+ CD34 selec. 

Ex vivo Ph2 
Naive T/ 
CD34- 

Tacrolimus 
Adult/ 
HM/TBI 

37 MRD PB (35) 3 9 21 0 78 13 

CD34 selec. Ex vivo Ph2 CD34- None 
Adult/ 
HM/TBI 

Unk MRD PB (44) 7 18 24 0 60 23 

CD34 selec Ex vivo Retro CD34- ATG 
Adult/ 
HM/TBI 

Unk MRD>7/8 PB (241) 1 5 22 <1 57 24 

PTCy In vivo Ph2 Activated T CSP Adult/ HM 49 MRD/MUD PB (45) 30 Unk 17 2 70 25 
PTCy In vivo Retro Activated T CNI+ MMF Adult/ HM 58 Haplo BM (104) Unk 30 44 10 45 26 
PTCy In vivo Retro Activated T None Adult/ HM 58 MRD/MUD BM (297) Unk 12 37 5* 72 27 
PTCy In vivo Ph2 Activated T None Adult/ HM 47 MRD/MUD BM (92) 14 14 22 5 67 28 
PTCy In vivo Retro  Activated T CNI+MMF Adult/ HM 34 MUD BM (150) 15 45 24 8 57 29 

PTCy  In vivo Retro Activated T 
None vs. 
CNI + MTX 

Ped/ 
HM/TBI 

45 vs. 
22 

MRD 
 

BM (29) 0 vs 0 0 vs 6 45 vs. 44 0 vs 0 54 vs. 58 30 

PTCy In vivo Retro Activated T None Ped/NM N/A Haplo BM (27) 0 24 N/A 22 78 
 
31 

PTCy  In vivo Ph2 Activated T CNI + MMF Both/HM Unk. Haplo   BM (68)  13    Unk 51    13    36 32 
PTCy  In vivo Ph1/2 Activated T None Adult/HM  MRD/MUD   BM (117) 3    10 44    3    55 33 

CB vs. MUD  Retro 
(memory) 
vs. none 

CNI + MTX 
or MMF 

Both/HM 31-39 
Cord >3/6 
MUD 

PB (237) BM 
(107) CB 
(140) 

Unk but no. 
diff.  

Unk but 
no. diff. 

15 vs. 24 Unk 71 vs. 63 36 

CB vs. MUD  Retro 
(memory) 
vs. none 

CNI + MTX 
or MMF 

Adult/HM/
TBI 

Unk  
Cord >3/6 
MUD 

PB (361) 
BM (185) 
CB (116) 

23 vs. 34 39 vs. 42 22 vs. 25 8 vs. 3 44 vs. 43 123 
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CB vs.  MUD 
/MSD 

 Retro 
(memory) 
vs. none 

CNI + MTX 
or MMF 

Both/HM/
TBI 

Equiv. 
Cord>3/6 
MUD/MSD 

PB (275) 
BM (81) 
CB (128) 

Unk 
26 vs. 
43-          
47 

15 vs. 37-          
43 

10 vs 0 
Unk, LFS: 
51 vs.33-
48 

34 

CB  Ph2 (memory) CNI + MMF Adult/NM N/A Cord >3/6 CB (26) 12 36 N/A 12 85 124 

Anti-CD20 In-vivo Ph2 B cells Unk 
Adult/HM/ 
RIC60% 

46 vs. 
41 

MRD MUD  PB (65) 31 vs. 49 48 vs. 60 34 vs. 28 N/A 71 vs. 56 56 

CB Treg vs. CB 
control 

 Ph1 Activated T Siro + MMF Adult/HM Unk 
mmMUD 
Cord >3/6 

CB (11) Unk. 0 vs 14 33 vs. 40 9 vs. 14 
81 vs. 61 
@ 1 yr 

125 

PB vs. BM  Ph3  CNI + MTX Adult/HM  
MUD/ 
mmMUD 

PB (273) 
BM (278) 

48 vs. 32  53 vs. 41 30 vs. 30  2 vs. 6 46 vs. 51 8 

*Some studies report extensive cGVHD. Footnotes to be added.  
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Table 2. Risk factors for development of chronic GVHD 

Donor factors HLA mismatch126 

Unrelated donor (except CB)7, 126 

Older donor age126 

Female donor for male recipient7, 126 

Parity of female donor126 

Mobilized blood cell graft7, 126 

Cord blood graft (low risk)7 

Genetic polymorphisms127-129 

Recipient factors Older patient age7, 126 

Genetic polymorphisms127-130 

Radiation for sclerotic GVHD131, 132 

Busulfan for BOS133 
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Figure Legends 

Figure 1. The etiology of chronic GVHD and the potential points of clinical intervention. 

Recipient factors include age, damage to bone marrow stroma, thymus, secondary lymphoid 

organs (SLO) (i.e., spleen, lymph nodes and other lymphoid tissues), and fibroblastic reticular 

cells (FRCs). The choice of agents in conditioning regimens and the overall intensity of 

conditioning regimens influences the extent of damage to these organs. Less robust evidence 

suggests a role for recovery of these organs in prevention of cGVHD, including thymus recovery, 

functional B cell maturation, and tissue repair. Donor graft factors include donor age, CD3+ T 

cell dose, and  graft source. Donor cell products contain heterogenous cell populations that 

contribute to acute GVHD, chronic GVHD, graft-versus-tumor activity, pathogen defense and 

tissue repair. Donor graft points of intervention include non-selective T cell depletion, selective 

depletion of naïve T cells and other graft engineering. Post-transplant cyclophosphamide (PTCy) 

may deplete alloantigen-activated T cells while sparing Treg cells, while low-dose IL-2 could 

expand Treg. Other graft engineering approaches could target induction of Breg and iNKT cells. 

Secondary insults occur after infusion of HCT and include withdrawal of immunosuppression, 

donor lymphocyte infusion, infections, loss of gastrointestinal integrity, and ultraviolet damage to 

the skin. Potential points of clinical intervention are shown in blue font inside blue boxes. Arrows 

and block symbols depicted with solid lines indicate strong evidence, while dashed arrows and 

block symbols represent less robust evidence.  

 

Figure 2. Factors that influence the emergence of chronic GVHD. The x-axis shows time after 

HCT, with key events denoted in shapes. The green triangle indicates gradual tapering of  

immunosuppressive treatment after HCT.  The orange triangle denotes the onset of aGVHD, and 

the yellow triangle denotes the onset of cGVHD, both of which can be masked by 

immunosuppressive treatment.  High-intensity pre-transplant conditioning regimens can decrease 

the risk of relapse but increase the risk of chronic GVHD.  Depletion of donor T cells can decrease 
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the risk of cGVHD but increase the risks of graft rejection, infections due to delayed immune 

reconstitution and relapse due to loss of GVT activity. Withdrawal of immunosuppression permits 

immune recovery and protection against infections but can increase the risk of cGVHD.  

 

Figure 3. Critical considerations in the design of cGVHD prevention trials. Under the 

assumption that the anticipated efficacy of the study intervention is high enough to warrant the 

effort and cost of conducting a trial, the eligibility criteria should be defined to selects patients at 

high risk of cGVHD (shown on the X-axis) so that potential benefits outweigh the intervention risks, 

especially among patients not destined to develop cGVHD. Potential benefit is proportional to the 

positive predictive value but is not a direct measure of potential benefit. Risks should be assessed 

in terms of frequency and severity. High-risk interventions are acceptable only for patients at high 

risk of cGVHD, while lower-risk interventions may be acceptable for patients at lower risk of 

cGVHD.  
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