Skip NavigationSkip to Content

Posttranslational interference of Ty1 retrotransposition by antisense RNAs

  1. Author:
    Matsuda, E.
    Garfinkel, D. J.
  2. Author Address

    Matsuda, Emiko, Garfinkel, David J.] NCI, Gene Regulat & Chromosome Biol Lab, Ctr Canc Res, Frederick, MD 21702 USA.
    1. Year: 2009
  1. Journal: Proceedings of the National Academy of Sciences of the United States of America
    1. 106
    2. 37
    3. Pages: 15657-15662
  2. Type of Article: Article
  1. Abstract:

    Transposable elements impact genome function by altering gene expression and causing chromosome rearrangements. As a result, organisms have evolved mechanisms, such as RNA-interference, to minimize the level of transposition. However, organisms without the conserved RNAi pathways, like Saccharomyces cerevisiae, must use other mechanisms to prevent transposon movement. Here, we provide evidence that antisense ( AS) RNAs from the retrovirus-like element Ty1 inhibit retrotransposition posttranslationally in Saccharomyces. Multiple Ty1AS transcripts overlap Ty1 sequences necessary for copy number control (CNC) and inhibit transposition in trans. Altering Ty1 copy number or deleting sequences in the CNC region that are required for reverse transcription affect Ty1AS RNA level and Ty1 movement. Ty1AS RNAs are enriched in virus-like particles, and are associated with a dramatic decrease in the level of integrase, less reverse transcriptase, and an inability to synthesize Ty1 cDNA. Thus, Ty1AS RNAs are part of an intrinsic mechanism that limits retrotransposition by reducing the level of proteins required for replication and integration.

    See More

External Sources

  1. DOI: 10.1073/pnas.0908305106
  2. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel