Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 27 results.
User Information
Export Records
  1. 1.   An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe
  2. Saio, T.; Ogura, K.; Shimizu, K.; Yokochi, M.; Burke, T. R.; Inagaki, F.
  3. Journal of Biomolecular Nmr. 2011, Nov; 51(3): 395-408.
  1. 2.   Ceramides: Branched alkyl chains in the sphingolipid siblings of diacylglycerol improve biological potency
  2. Kang, J. H.; Garg, H.; Sigano, D. M.; Francella, N.; Blumenthal, R.; Marquez, V. E.
  3. Bioorganic & Medicinal Chemistry. 2009 17(4): 1498-1505.
  1. 3.   Conformationally constrained analogues of diacylglycerol. 29. Cells sort diacylglycerol-lactone chemical zip codes to produce diverse and selective biological activities
  2. Duan, D.; Sigano, D. M.; Kelley, J. A.; Lai, C. C.; Lewin, N. E.; Kedei, N.; Peach, M. L.; Lee, J.; Abeyweera, T. P.; Rotenberg, S. A.; Kim, H.; Kim, Y. H.; El Kazzouli, S.; Chung, J. U.; Young, H. A.; Young, M. R.; Baker, A.; Colburn, N. H.
  3. Journal of Medicinal Chemistry. 2008 51(17): 5198-5220.
  1. 5.   Conformationally constrained analogues of diacylglycerol (DAG). 27. Modulation of membrane translocation of protein kinase C (PKC) isozymes alpha and delta by diacylglycerol lactones (DAG-lactones) containing rigid-rod acyl groups
  2. Malolanarasimhan, K.; Kedei, N.; Sigano, D. M.; Kelley, J. A.; Lai, C. C.; Lewin, N. E.; Surawski, R. J.; Pavlyukovets, V. A.; Garfield, S. H.; Wincovitch, S.; Blumberg, P. M.; Marquez, V. E.
  3. Journal of Medicinal Chemistry. 2007, Mar; 50(5): 962-978.
  1. 6.   Conformationally constrained analogues of diacylglycerol. 26. Exploring the chemical space surrounding the C1 domain of protein kinase C with DAG-lactones containing aryl groups at the sn-1 and sn-2 positions
  2. Kang, J. H.; Benzaria, S.; Sigano, D. M.; Lewin, N. E.; Pu, Y. M.; Peach, M. L.; Blumberg, P. M.; Marquez, V. E.
  3. Journal of Medicinal Chemistry. 2006, Jun; 49(11): 3185-3203.
  1. 7.   Crystal structures of a high-affinity macrocyclic peptide mimetic in complex with the Grb2 SH2 domain
  2. Phan, J.; Shi, Z. D.; Burke, T. R.; Waugh, D. S.
  3. Journal of Molecular Biology. 2005, OCT 14; 353(1): 104-115.
  1. 8.   Binding affinity difference induced by the stereochemistry of the sulfoxide bridge of the cyclic peptide inhibitors of Grb2-SH2 domain: NMR studies for the structural origin
  2. Shi, Y. H.; Song, Y. L.; Lin, D. H.; Tan, J. Z.; Roller, P. P.; Li, Q.; Long, Y. Q.; Song, G. Q.
  3. Biochemical and Biophysical Research Communications. 2005, MAY 20; 330(4): 1254-1261.
  1. 9.   Qualitative assessment Of IC50 values of inhibitors of the neuronal nicotinic acetylcholine receptor using a single chromatographic experiment and multivariate cluster analysis
  2. Jozwiak, K.; Moaddel, R.; Yamaguchi, R.; Ravichandran, S.; Collins, J. R.; Wainer, I. W
  3. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences. 2005, MAY 5; 819(1): 169-174.
  1. 10.   The N-terminal peptide of the Kaposi's sarcoma-associated herpesvirus (KSHV)-cyclin determines substrate specificity
  2. Kaldis, P.
  3. Journal of Biological Chemistry. 2005, MAR 25; 280(12): 11165-11174.
  1. 11.   Purified Bacillus anthracis lethal toxin complex formed in Vitro and during infection exhibits functional and biological activity
  2. Panchal, R. G.; Halverson, K. M.; Ribot, W.; Lane, D.; Kenny, T.; Abshire, T. G.; Ezzell, J. W.; Hoover, T. A.; Powell, B.; Little, S.; Kasianowicz, J. J.; Bavari, S.
  3. Journal of Biological Chemistry. 2005, MAR 18; 280(11): 10834-10839.
  1. 12.   Design and synthesis of conformationally constrained Grb2 SH2 domain binding peptides employing alpha-methylphenylalanyl based phosphotyrosyl mimetics
  2. Oishi, S.; Karki, R. G.; Kang, S. U.; Wang, X. Z.; Worthy, K. M.; Bindu, L. K.; Nicklaus, M. C.; Fisher, R. J.; Burke, T. R.
  3. Journal of Medicinal Chemistry. 2005, FEB 10; 48(3): 764-772.
  1. 13.   Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics
  2. Sun, H. Y.; Nikolovska-Coleska, Z.; Chen, J. Y.; Yang, C. Y.; Tomita, Y.; Pan, H. G.; Yoshioka, Y.; Krajewski, K.; Roller, P. P.; Wang, S. M.
  3. Bioorganic & Medicinal Chemistry Letters. 2005, FEB 1; 15(3): 793-797.
  1. 14.   Evaluation of macrocyclic Grb2 SH2 domain-binding peptide mimetics prepared by ring-closing metathesis of C-terminal allylglycines with an N-terminal beta-vinyl-substituted phosphotyrosyl mimetic
  2. Oishi, S.; Karki, R. G.; Shi, Z. D.; Worthy, K. M.; Bindu, L.; Chertov, O.; Esposito, D.; Frank, P.; Gillette, W. K.; Maderia, M.; Hartley, J.; Nicklaus, M. C.; Barchi, J. J.; Fisher, R. J.; Burke, T. R.
  3. Bioorganic & Medicinal Chemistry. 2005 13(7): 2431-2438.
  1. 15.   Conformationally constrained analogues of diacylglycerol (DAG). 23. Hydrophobic ligand-protein interactions versus ligand-lipid interactions of DAG-lactones with protein kinase C (PK-C)
  2. Tamamura, H.; Sigano, D. M.; Lewin, N. E.; Peach, M. L.; Nicklaus, M. C.; Blumberg, P. M.; Marquez, V. E.
  3. Journal of Medicinal Chemistry. 2004, SEP 23; 47(20): 4858-4864.
  1. 16.   Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization
  2. Nikolovska-Coleska, Z.; Wang, R. X.; Fang, X. L.; Pan, H. G.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S. M.
  3. Analytical Biochemistry. 2004, SEP 15; 332(2): 261-273.
  1. 17.   Caught in the act: visualization of an intermediate in the DNA base-flipping pathway induced by Hhal methyltransferase
  2. Horton, J. R.; Ratner, G.; Banavali, N. K.; Huang, N.; Choi, Y.; Maier, M. A.; Marquez, V. E.; Mackerell, A. D.; Cheng, X. D.
  3. Nucleic Acids Research. 2004 32(13): 3877-3886.
  1. 18.   Impact of antibody framework residue V-H-71 on the stability of a humanised anti-MUC1 scFv and derived immunoenzyme
  2. Krauss, J.; Arndt, M. A. E.; Zhu, Z.; Newton, D. L.; Vu, B. K.; Choudhry, V.; Darbha, R.; Ji, X.; Courtenay-Luck, N. S.; Deonarain, M. P.; Richards, J.; Rybak, S. M.
  3. British Journal of Cancer. 2004 90(9): 1863-1870.
  1. 20.   Solution conformations of wild-type and mutated Bak BH3 peptides via dynamical conformational sampling and implication to their binding to antiapoptotic Bcl-2 proteins
  2. Yang, C. Y.; Nikolovska-Coleska, Z.; Li, P.; Roller, P.; Wang, S. M.
  3. Journal of Physical Chemistry B. 2004 108(4): 1467-1477.
  1. 22.   MICA and recovery from hepatitis C virus and hepatitis B virus infections
  2. Karacki, P. S.; Gao, X.; Thio, C. L.; Thomas, D. L.; Goedert, J. J.; Vlahov, D.; Kaslow, R.; Strathdee, S.; Hilgartner, M. W.; O'Brien, S. J.; Carrington, M.
  3. Genes and Immunity. 2004 5(4): 261-266.
  1. 23.   Development of L-3-aminotyrosine suitably protected for the synthesis of a novel nonphosphorylated hexapeptide with low-nanomolar Grb2-SH2 domain-binding affinity
  2. Song, Y. L.; Roller, P. P.; Long, Y. Q.
  3. Bioorganic & Medicinal Chemistry Letters. 2004 14(12): 3205-3208.
  1. 24.   Conformationally constrained diacylglycerol (DAG) analogs: 4-C-hydroxyethyl-5-O-acyl-2,3-dideoxy-D-glyceropentono-1,4-lactone analogs as protein kinase C (PKC) ligands
  2. Lee, J.; Kim, S. Y.; Kang, J. H.; Acs, G.; Acs, P.; Blumberg, P. M.; Marquez, V. E.
  3. European Journal of Medicinal Chemistry. 2004 39(1): 69-77.
  1. 25.   Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design
  2. Dror, O.; Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. J.
  3. Current Medicinal Chemistry. 2004 11(1): 71-90.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel