Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 40 results.
User Information
Export Records
  1. 1.   Deletion of a single CTCF motif at the boundary of a chromatin domain with three FGF genes disrupts gene expression and embryonic development
  2. Chakraborty, Shreeta; Wenzlitschke, Nina; Anderson,Matthew; Eraso, Ariel; Baudic, Manon; Thompson, Joyce J; Evans, Alicia A; Shatford-Adams, Lilly M; Chari,Raj; Awasthi,Roackie; Dale, Ryan K; Lewandoski,Mark; Petros, Timothy J; Rocha, Pedro P
  3. Developmental Cell. 2025, Feb 24;
  1. 2.   Preclinical Evaluation of the FGFR-Family Inhibitor Futibatinib for Pediatric Rhabdomyosarcoma
  2. Wu, Jerry T; Cheuk, Adam; Isanogle,Kristine; Robinson,Christina; Zhang, Xiaohu; Ceribelli, Michele; Beck, Erin; Shinn, Paul; Klumpp-Thomas, Carleen; Wilson, Kelli M; McKnight, Crystal; Itkin, Zina; Sotome, Hiroshi; Hirai, Hiroshi; Calleja, Elizabeth; Wacheck, Volker; Gouker, Brad; Peer, Cody J; Corvalan, Natalia; Milewski, David; Kim, Yong Y; Figg, William D; Edmondson,Elijah; Thomas, Craig J; Difilippantonio,Simone; Wei, Jun S; Khan, Javed
  3. Cancers. 2023, Aug 09; 15(16):
  1. 3.   Fgf8 promotes survival of nephron progenitors by regulating BAX/BAK-mediated apoptosis
  2. Anderson,Matthew; Misaghian, Salvia; Sharma,Nirmala; Perantoni,Alan; Lewandoski,Mark
  3. Differentiation; research in biological diversity. 2022, Dec 06; 130: 7-15.
  1. 4.   Targeted Deep Sequencing of Bladder Tumors Reveals Novel Associations between Cancer Gene Mutations and Mutational Signatures with Major Risk Factors
  2. Koutros, Stella; Rao, Nina; Moore, Lee E.; Nickerson, Michael L.; Lee, Donghyuk; Zhu, Bin; Pardo, Larissa A.; Baris, Dalsu; Schwenn, Molly; Johnson, Alison; Jones,Kristine; Garcia-Closas, Montserrat; Prokunina-Olsson, Ludmila; Silverman, Debra T.; Rothman, Nathaniel; Dean,Michael
  3. CLINICAL CANCER RESEARCH. 2021, Jul; 27(13): 3725-3733.
  1. 5.   Sprouty2 regulates positioning of retinal progenitors through suppressing the Ras/Raf/MAPK pathway
  2. Sun,Jian; Yoon,Jaeho; Lee,Moonsup; Hwang,Rich Yooseok; Daar,Ira
  3. Scientific reports. 2020, Aug 13; 10(1): 13752.
  1. 6.   Generation and validation of novel conditional flox and inducible Cre alleles targeting fibroblast growth factor 18 (Fgf18)
  2. Hagan, Andrew S; Boylan,Michael; Smith, Craig; Perez-Santamarina, Estela; Kowalska, Karolina; Hung, Irene H; Lewis, Renate M; Hajihosseini, Mohammad K; Lewandoski,Mark; Ornitz, David M
  3. Developmental dynamics : an official publication of the American Association of Anatomists. 2019, JUL 22;
  1. 7.   Coordinated directional outgrowth and pattern formation by integration of Wnt5a and Fgf signaling in planar cell polarity
  2. Gao, Bo; Ajima, Rieko; Yang, Wei; Li, Chunyu; Song, Hai; Anderson, Matthew; Liu, Robert R; Lewandoski, Mark; Yamaguchi, Terry P; Yang, Yingzi
  3. Development (Cambridge, England). 2018, Apr 13; 145(8): pii: dev.163824.
  1. 8.   FGF8 is essential for formation of the ductal system in the male reproductive tract
  2. Kitagaki, J.; Ueda, Y.; Chi, X.; Sharma, N.; Elder, C. M.; Truffer, E.; Costantini, F.; Lewandoski, M.; Perantoni, A. O.
  3. Development. 2011, Dec; 138(24): 5369-5378.
  1. 9.   Islet1-mediated activation of the beta-catenin pathway is necessary for hindlimb initiation in mice
  2. Kawakami, Y.; Marti, M.; Kawakami, H.; Itou, J.; Quach, T.; Johnson, A.; Sahara, S.; O'Leary, D. D. M.; Nakagawa, Y.; Lewandoski, M.; Pfaff, S.; Evans, S. M.; Belmonte, J. C. I.
  3. Development. 2011, Oct; 138(20): 4465-4473.
  1. 10.   Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder
  2. Gui, Y. T.; Guo, G. W.; Huang, Y.; Hu, X. D.; Tang, A. F.; Gao, S. J.; Wu, R. H.; Chen, C.; Li, X. X.; Zhou, L.; He, M. H.; Li, Z. S.; Sun, X. J.; Jia, W. L.; Chen, J. N.; Yang, S. M.; Zhou, F. J.; Zhao, X. K.; Wan, S. Q.; Ye, R.; Liang, C. Z.; Liu, Z. S.; Huang, P. D.; Liu, C. X.; Jiang, H.; Wang, Y.; Zheng, H. C.; Sun, L.; Liu, X. W.; Jiang, Z. M.; Feng, D. F.; Chen, J.; Wu, S.; Zou, J.; Zhang, Z. F.; Yang, R. L.; Zhao, J.; Xu, C. J.; Yin, W. H.; Guan, Z. C.; Ye, J. X.; Zhang, H.; Li, J. X.; Kristiansen, K.; Nickerson, M. L.; Theodorescu, D.; Li, Y. R.; Zhang, X. Q.; Li, S. G.; Wang, J.; Yang, H. M.; Cai, Z. M.
  3. Nature Genetics. 2011, Sep; 43(9): 875-U84.
  1. 11.   Fibroblast Growth Factor Receptor-induced Phosphorylation of EphrinB1 Modulates Its Interaction with Dishevelled
  2. Lee, H. S.; Mood, K.; Battu, G.; Ji, Y. J.; Singh, A.; Daar, I. O.
  3. Molecular Biology of the Cell. 2009 20(1): 124-133.
  1. 12.   Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin-proteasomal degradation
  2. Miao, J.; Xiao, Z.; Kanamaluru, D.; Min, G.; Yau, P. M.; Veenstra, T. D.; Ellis, E.; Strom, S.; Suino-Powell, K.; Xu, H. E.; Kemper, J. K.
  3. Genes & Development. 2009 23(8): 986-996.
  1. 13.   FGF signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis
  2. Wahl, M. B.; Deng, C.; Lewandoski, M.; Pourquie, O.
  3. Development. 2007, Nov; 134(22): 4033-4041.
  1. 14.   EphrinB1 signals from the cell surface to the nucleus by recruitment of STAT3
  2. Bong, Y. S.; Lee, H. S.; Carim-Todd, L.; Mood, K.; Nishanian, T. G.; Tessarollo, L.; Daar, I. O.
  3. Proceedings of the National Academy of Sciences of the United States of America. 2007, Oct; 104(44): 17305-17310.
  1. 15.   Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea
  2. Jacques, B. E.; Montcouquiol, M. E.; Layman, E. M.; Lewandoski, M.; Kelley, M. W.
  3. Development. 2007, Aug; 134(16): 3021-3029.
  1. 16.   BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling
  2. Pajni-Underwood, S.; Wilson, C. P.; Elder, C.; Mishina, Y.; Lewandoski, M.
  3. Development. 2007, Jun; 134(12): 2359-2368.
  1. 17.   Four independent mutations in the feline Fibroblast Growth Factor 5 gene determine the long-haired phenotype in domestic cats
  2. Kehler, J. S.; David, V. A.; Schaffer, A. A.; Bajema, K.; Eizirik, E.; Ryugo, D. K.; Hannah, S. S.; O'Brien, S. J.; Menotti-Raymond, M.
  3. Journal of Heredity. 2007, Sep-Oct; 98(6): 555-566.
  1. 18.   A threshold requirement for Gbx2 levels in hindbrain development
  2. Waters, S. T.; Lewandoski, M.
  3. Development. 2006, May; 133(10): 1991-2000.
  1. 19.   FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis
  2. Li, C. L.; Xu, X. L.; Nelson, D. K.; Williams, T.; Kuehn, M. R.; Deng, C. X.
  3. Development. 2005, NOV; 132(21): 4755-4764.
  1. 20.   Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning
  2. Verheyden, J. M.; Lewandoski, M.; Deng, C. X.; Harfe, B. D.; Sun, X.
  3. Development. 2005, OCT; 132(19): 4235-4245.
  1. 21.   Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development
  2. Perantoni, A. O.; Timofeeva, O.; Naillat, F.; Richman, C.; Pajni-Underwood, S.; Wilson, C.; Vainio, S.; Dove, L. F.; Lewandoski, M.
  3. Development. 2005, SEP; 132(17): 3859-3871.
  1. 22.   The FGF8 signaling pathway regulates differentiation during the development of the cochlear sensory epithelium
  2. Jacques, B. E.; Layman, E. M.; Lewandoski, M.; Kelley, M. W.
  3. Developmental Biology. 2005, JUL 15; 283(2): 631, Abstract 278-631, Abstract 278.
  1. 23.   The mouse Fgf8 gene is required for nephrogenesis but not for somitogenesis
  2. Lewandoski, M.; Timofeeva, O.; Naillat, F.; Richman, C.; Pajni-Underwood, S.; Wilson, C.; Vainio, S.; Perantoni, A. O.
  3. Developmental Biology. 2005, JUL 15; 283(2): 683, Abstract 529-683, Abstract 529.
  1. 24.   BMP signals control interdigital programmed cell death by regulating FGF signaling
  2. Underwood, S. P.; Wilson, C. W.; Mishina, Y.; Lewandoski, M.
  3. Developmental Biology. 2005, JUL 15; 283(2): 657, Abstract 401-657, Abstract 401.
  1. 25.   Interactions between the FGF and ephrinB1 signaling pathways regulate the morphogenetic movements underlying eye field formation
  2. Moody, S. A.; Moore, K. B.; Mood, K.; Daar, I. O.
  3. Developmental Biology. 2004, JUL 15; 271(2): 559, Abstract 57-559, Abstract 57.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel