Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 47 results.
User Information
Export Records
  1. 1.   Tumour predisposition and cancer syndromes as models to study gene-environment interactions
  2. Carbone, Michele; Arron, Sarah T.; Beutler, Bruce; Bononi, Angela; Cavenee, Webster; Cleaver, James E.; Croce, Carlo M.; D'Andrea, Alan; Foulke, William D.; Gaudino, Giovanni; Groden, Joanna L.; Henske, Elizabeth P.; Hickson, Ian D.; Hwang, Paul M.; Kolodner, Richard D.; Mak, Tak W.; Malkin, David; Monnat, Raymond J. Jr Jr; Novelli, Flavia; Pass, Harvey; Petrini, John H.; Schmidt,Laura; Yang, Haining
  3. Nature reviews. Cancer. 2020, May 29;
  1. 2.   DNA Methyltransferase Inhibitor, Zebularine, Delays Tumor Growth and Induces Apoptosis in a Genetically Engineered Mouse Model of Breast Cancer
  2. Chen, M.; Shabashvili, D.; Nawab, A.; Yang, S. X.; Dyer, L. M.; Brown, K. D.; Hollingshead, M.; Hunter, K. W.; Kaye, F. J.; Hochwald, S. N.; Marquez, V. E.; Steeg, P.; Zajac-Kaye, M.
  3. Molecular Cancer Therapeutics. 2012, Feb; 11(2): 370-382.
  1. 3.   Apoptosis Is the Essential Target of Selective Pressure against p53, whereas Loss of Additional p53 Functions Facilitates Carcinoma Progression
  2. Lu, X. D. L. X. D.; Yang, C. Y.; Yin, C. Y.; Van Dyke, T.; Simin, K.
  3. Molecular Cancer Research. 2011, Apr; 9(4): 430-439.
  1. 4.   Activation of p73 and induction of Noxa by DNA damage requires NF-kappa B
  2. Martin, A. G.; Trama, J.; Crighton, D.; Ryan, K. M.; Fearnhead, H. O.
  3. Aging-Us. 2009, Mar; 1(3): 335-349.
  1. 5.   Urothelial Overexpression of Insulin-Like Growth Factor-1 Increases Susceptibility to p-Cresidine-Induced Bladder Carcinogenesis in Transgenic Mice
  2. Hursting, S. D.; Perkins, S. N.; Lavigne, J. A.; Beltran, L.; Haines, D. C.; Hill, H. L.; Alvord, W. G.; Barrett, J. C.; DiGiovanni, J.
  3. Molecular Carcinogenesis. 2009 48(8): 671-677.
  1. 6.   Proline Oxidase Functions as a Mitochondrial Tumor Suppressor in Human Cancers
  2. Liu, Y. M.; Borchert, G. L.; Donald, S. P.; Diwan, B. A.; Anver, M.; Phang, J. M.
  3. Cancer Research. 2009 69(16): 6414-6422.
  1. 7.   Cooperativity Dominates the Genomic Organization of p53-Response Elements: A Mechanistic View
  2. Pan, Y. P.; Nussinov, R.
  3. Plos Computational Biology. 2009 5(7):
  1. 8.   Experimental validation for quantitative protein network models
  2. Nishizuka, S.; Spurrier, B.
  3. Current Opinion in Biotechnology. 2008 19(1): 41-49.
  1. 9.   Proteomic analysis of protein expression changes in a model of gliomagenesis
  2. McBee, J. K.; Yu, L. R.; Kinoshita, Y.; Uo, T.; Beyer, R. P.; Veenstra, T. D.; Morrison, R. S.
  3. Proteomics Clinical Applications. 2007, Nov; 1(11): 1485-1498.
  1. 10.   Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis
  2. Hu, C. A. A.; Donald, S. P.; Yu, J.; Lin, W. W.; Liu, Z. H.; Steel, G.; Obie, C.; Valle, D.; Phang, J. M.
  3. Molecular and Cellular Biochemistry. 2007, Jan; 295(1-2): 85-92.
  1. 11.   Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling
  2. Liu, Y.; Borchert, G. L.; Surazynski, A.; Hu, C. A.; Phang, J. M.
  3. Oncogene. 2006, Sep; 25(41): 5640-5647.
  1. 12.   Proline oxidase, a proapoptotic gene, is induced by troglitazone - Evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms
  2. Pandhare, J.; Cooper, S. K.; Phang, J. M.
  3. Journal of Biological Chemistry. 2006, JAN 27; 281(4): 2044-2052.
  1. 13.   WMC-79, a potent agent against colon cancers, induces apoptosis through a p53-dependent pathway
  2. Kosakowska-Cholody, T.; Cholody, W. M.; Monks, A.; Woynarowska, B. A.; Michejda, C. J.
  3. Molecular Cancer Therapeutics. 2005, OCT; 4(10): 1617-1627.
  1. 14.   Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells
  2. Yang, Y. L.; Ludwig, R. L.; Jensen, J. P.; Pierre, S. A.; Medaglia, M. V.; Davydov, I. V.; Safiran, Y. J.; Oberoi, P.; Kenten, J. H.; Phillips, A. C.; Weissman, A. M.; Vousden, K. H.
  3. Cancer Cell. 2005, JUN; 7(6): 547-559.
  1. 15.   p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase
  2. Zhao, Y. F.; Chaiswing, L.; Velez, J. M.; Batinic-Haberle, I.; Colburn, N. H.; Oberley, T. D.; St Clair, D. K.
  3. Cancer Research. 2005, MAY 1; 65(9): 3745-3750.
  1. 16.   p53 is a suppressor of inflammatory response in mice
  2. Komarova, E. A.; Krivokrysenko, V.; Wang, K. H.; Neznanov, N.; Chernov, M. V.; Komarov, P. G.; Brennan, M. L.; Golovkina, T. V.; Rokhlin, O.; Kuprash, D. V.; Nedospasov, S. A.; Hazen, S. R.; Feinstein, E.; Gudkov, A. V.
  3. Faseb Journal. 2005, APR; 19(6): Published online April 5, 2005.
  1. 17.   Comparison of the protein-protein interfaces in the p53-DNA crystal structures: Towards elucidation of the biological interface
  2. Ma, B. Y.; Pan, Y. P.; Gunasekaran, K.; Venkataraghavan, R. B.; Levine, A. J.; Nussinov, R.
  3. Proceedings of the National Academy of Sciences of the United States of America. 2005, MAR 15; 102(11): 3988-3993.
  1. 18.   5-Lipoxygenase regulates senescence-like growth arrest by promoting ROS-dependent p53 activation
  2. Catalano, A.; Rodilossi, S.; Caprari, P.; Coppola, V.; Procopio, A.
  3. Embo Journal. 2005, JAN 12; 24(1): 170-179.
  1. 19.   Nitric oxide, a mediator of inflammation, suppresses tumorigenesis
  2. Hussain, S. P.; Trivers, G. E.; Hofseth, L. J.; He, P. J.; Shaikh, I.; Mechanic, L. E.; Doja, S.; Jiang, W. D.; Subleski, J.; Shorts, L.; Haines, D.; Laubach, V. E.; Wiltrout, R. H.; Djurickovic, D.; Harris, C. C.
  3. Cancer Research. 2004, OCT 1; 64(19): 6849-6853.
  1. 20.   5-Lipoxygenase antagonizes genotoxic stress-induced apoptosis by altering p53 nuclear trafficking
  2. Catalano, A.; Caprari, P.; Soddu, S.; Procopio, A.; Romano, M.
  3. Faseb Journal. 2004, SEP; 18(12): Published online only.
  1. 21.   Proteome analysis of DNA damage-induced neuronal death using high throughput mass spectrometry
  2. Johnson, M. D.; Yu, L. R.; Conrads, T. P.; Kinoshita, Y.; Uo, T.; Matthews, J. D.; Lee, S. W.; Smith, R. D.; Veenstra, T. D.; Morrison, R. S.
  3. Journal of Biological Chemistry. 2004 279(25): 26685-26697.
  1. 22.   DNA damage is a prerequisite for p53-mediated proteasomal degradation of HIF-1 alpha in hypoxic cells and downregulation of the hypoxia marker carbonic anhydrase IX
  2. Kaluzova, M.; Kaluz, S.; Lerman, M. I.; Stanbridge, E. J.
  3. Molecular and Cellular Biology. 2004 24(13): 5757-5766.
  1. 23.   Regulating the p53 system through ubiquitination
  2. Yang, Y. L.; Li, C. C. H.; Weissman, A. M.
  3. Oncogene. 2004 23(11): 2096-2106.
  1. 24.   Transgenic expression in mouse lung reveals distinct biological roles for the adenovirus type 5 E1A 243-and 289-amino-acid proteins
  2. Yang, Y. P.; McKerlie, C.; Borenstein, S. H.; Lu, Z.; Schito, M.; Chamberlain, J. W.; Buchwald, M.
  3. Journal of Virology. 2002 76(17): 8910-8919.
  1. 25.   Human p14(ARF)-mediated cell cycle arrest strictly depends on intact p53 signaling pathways
  2. Weber, H. O.; Samuel, T.; Rauch, P.; Funk, J. O.
  3. Oncogene. 2002 21(20): 3207-3212.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel