Skip NavigationSkip to Content

Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development

  1. Author:
    Loomis, Rebecca J.
    Stewart-Jones, Guillaume B. E.
    Tsybovsky,Yaroslav
    Caringal, Ria T.
    Morabito, Kaitlyn M.
    McLellan, Jason S.
    Chamberlain, Amy L.
    Nugent, Sean T.
    Hutchinson, Geoffrey B.
    Kueltzo, Lisa A.
    Mascola, John R.
    Graham, Barney S.
  2. Author Address

    NIAID, Viral Pathogenesis Lab, Vaccine Res Ctr, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA.NIAID, Virol Lab, Vaccine Res Ctr, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA.Leidos Biomed Res Inc, Frederick Natl Lab Canc Res, Electron Microscopy Lab, Canc Res Technol Program, Frederick, MD USA.NIAID, Vaccine Prod Program, Vaccine Res Ctr, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA.Univ Texas Austin, Dept Mol Biosci, Austin, TX 78712 USA.
    1. Year: 2020
    2. Date: JUN 11
    3. Epub Date: 2020 06 11
  1. Journal: FRONTIERS IN IMMUNOLOGY
  2. FRONTIERS MEDIA SA,
    1. 11
    2. Pages: 842
  3. Type of Article: Article
  4. Article Number: 842
  5. ISSN: 1664-3224
  1. Abstract:

    Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.

    See More

External Sources

  1. DOI: 10.3389/fimmu.2020.00842
  2. PMID: 32595632
  3. PMCID: PMC7300195
  4. WOS: 000543901800001

Library Notes

  1. Fiscal Year: FY2019-2020
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel