Skip NavigationSkip to Content

Federated learning for predicting clinical outcomes in patients with COVID-19

  1. Author:
    Dayan, Ittai
    Roth, Holger R.
    Zhong, Aoxiao
    Harouni, Ahmed
    Gentili, Amilcare
    Abidin, Anas Z.
    Liu, Andrew
    Costa, Anthony Beardsworth
    Wood, Bradford J.
    Tsai, Chien-Sung
    Wang, Chih-Hung
    Hsu, Chun-Nan
    Lee, C. K.
    Ruan, Peiying
    Xu, Daguang
    Wu, Dufan
    Huang, Eddie
    Kitamura, Felipe Campos
    Lacey, Griffin
    de Antonio Corradi, Gustavo Cesar
    Nino, Gustavo
    Shin, Hao-Hsin
    Obinata, Hirofumi
    Ren, Hui
    Crane, Jason C.
    Tetreault, Jesse
    Guan, Jiahui
    Garrett, John W.
    Kaggie, Joshua D.
    Park, Jung Gil
    Dreyer, Keith
    Juluru, Krishna
    Kersten, Kristopher
    Rockenbach, Marcio Aloisio Bezerra Cavalcanti
    Linguraru, Marius George
    Haider, Masoom A.
    AbdelMaseeh, Meena
    Rieke, Nicola
    Damasceno, Pablo F.
    Silva, Pedro Mario Cruz E.
    Wang, Pochuan
    Xu, Sheng
    Kawano, Shuichi
    Sriswasdi, Sira
    Park, Soo Young
    Grist, Thomas M.
    Buch, Varun
    Jantarabenjakul, Watsamon
    Wang, Weichung
    Tak, Won Young
    Li, Xiang
    Lin, Xihong
    Kwon, Young Joon
    Quraini, Abood
    Feng, Andrew
    Priest, Andrew N.
    Turkbey, Baris
    Glicksberg, Benjamin
    Bizzo, Bernardo
    Kim, Byung Seok
    Tor-Diez, Carlos
    Lee, Chia-Cheng
    Hsu, Chia-Jung
    Lin, Chin
    Lai, Chiu-Ling
    Hess, Christopher P.
    Compas, Colin
    Bhatia, Deepeksha
    Oermann, Eric K.
    Leibovitz, Evan
    Sasaki, Hisashi
    Mori, Hitoshi
    Yang, Isaac
    Sohn, Jae Ho
    Murthy, Krishna Nand Keshava
    Fu, Li-Chen
    Furtado de Mendonca, Matheus Ribeiro
    Fralick, Mike
    Kang, Min Kyu
    Adil, Mohammad
    Gangai, Natalie
    Vateekul, Peerapon
    Elnajjar, Pierre
    Hickman, Sarah
    Majumdar, Sharmila
    McLeod, Shelley L.
    Reed, Sheridan
    Graf, Stefan
    Harmon,Stephanie
    Kodama, Tatsuya
    Puthanakit, Thanyawee
    Mazzulli, Tony
    de Lavor, Vitor Lima
    Rakvongthai, Yothin
    Lee, Yu Rim
    Wen, Yuhong
    Gilbert, Fiona J.
    Flores, Mona G.
    Li, Quanzheng
  2. Author Address

    MGH Radiol, Boston, MA USA.Harvard Med Sch, Boston, MA 02115 USA.NVIDIA, Santa Clara, CA 95051 USA.Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Ctr Adv Med Comp & Anal, Boston, MA 02115 USA.Harvard Univ, Sch Engn & Appl Sci, Boston, MA 02115 USA.San Diego VA Hlth Care Syst, San Diego, CA USA.Icahn Sch Med Mt Sinai, Dept Neurosurg, New York, NY 10029 USA.NIH, Radiol & Imaging Sci Clin Ctr, Bldg 10, Bethesda, MD 20892 USA.NCI, NIH, Bethesda, MD 20892 USA.Triserv Gen Hosp, Natl Def Med Ctr, Dept Surg, Div Cardiovasc Surg, Taipei, Taiwan.Triserv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan.Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan.Univ Calif San Diego, Ctr Res Biol Syst, San Diego, CA 92103 USA.DasaInova, Diagnost Amer SA, Barueri, Brazil.Childrens Natl Hosp, Div Pediat Pulm & Sleep Med, Washington, DC USA.Mem Sloan Kettering Canc Ctr, 1275 York Ave, New York, NY 10021 USA.Self Def Forces Cent Hosp, Tokyo, Japan.Univ Calif San Francisco, Ctr Intelligent Imaging, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA.Univ Wisconsin, Dept Radiol, Sch Med & Publ Hlth, Madison, WI 53706 USA.Univ Wisconsin, Dept Med Phys, Sch Med & Publ Hlth, 1530 Med Sci Ctr, Madison, WI 53706 USA.Univ Cambridge, NIHR Cambridge Biomed Resource Ctr, Dept Radiol, Cambridge, England.Yeungnam Univ, Dept Internal Med, Coll Med, Daegu, South Korea.Massachusetts Gen Brigham, Ctr Clin Data Sci, Boston, MA USA.Childrens Natl Hosp, Sheikh Zayed Inst Pediat Surg Innovat, Washington, DC USA.George Washington Univ, Dept Radiol, Sch Med & Hlth Sci, Washington, DC USA.Univ Toronto, Joint Dept Med Imaging, Sinai Hlth Syst, Toronto, ON, Canada.Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada.Natl Taiwan Univ, MeDA Lab Inst Appl Math Sci, Taipei, Taiwan.Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei, Taiwan.Chulalongkorn Univ, Fac Med, Res Affairs, Bangkok, Thailand.Chulalongkorn Univ, Fac Med, Ctr Artificial Intelligence Med, Bangkok, Thailand.Kyungpook Natl Univ, Sch Med, Dept Internal Med, Daegu, South Korea.Univ Wisconsin, Dept Biomed Engn, Sch Med & Publ Hlth, Madison, WI USA.Chulalongkorn Univ, Fac Med, Dept Pediat, Bangkok, Thailand.King Chulalongkorn Mem Hosp, Thai Red Cross Emerging Infect Dis Clin Ctr, Bangkok, Thailand.Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA.Cambridge Univ Hosp, NIHR Cambridge Biomed Resource Ctr, Dept Radiol, Cambridge, England.NIH, Dept Radiol & Imaging Sci, Bldg 10, Bethesda, MD 20892 USA.Icahn Sch Med Mt Sinai, Hass Plattner Inst Digital Hlth Mt Sinai, New York, NY 10029 USA.Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA.Catholic Univ Daegu, Dept Internal Med, Sch Med, Daegu, South Korea.Triserv Gen Hosp, Natl Def Med Ctr, Planning & Management Off, Taipei, Taiwan.Natl Def Med Ctr, Sch Med, Taipei, Taiwan.Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan.Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan.Natl Hlth Insurance Adm, Med Review & Pharmaceut Benefits Div, Taipei, Taiwan.NYU Grossman Sch Med, Dept Neurosurg, New York, NY USA.Natl Taiwan Univ, MOST NTU All Vista Healthcare Ctr, Ctr Artificial Intelligence & Adv Robot, Taipei, Taiwan.Sinai Hlth Syst, Div Gen Internal Med & Geriatr Fralick, Toronto, ON, Canada.Chulalongkorn Univ, Fac Engn, Dept Comp Engn, Bangkok, Thailand.Sinai Hlth, Schwartz Reisman Emergency Med Inst, Toronto, ON, Canada.Univ Toronto, Dept Family & Community Med, Toronto, ON, Canada.Univ Cambridge, NIHR Cambridge Biomed Res Ctr, Dept Med, Cambridge, England.Univ Cambridge, NIHR Cambridge Biomed Res Ctr, NIHR BioResource Translat Res, Cambridge, England.NCI, Clin Res Directorate, Frederick Natl Lab Canc, Frederick, MD 21701 USA.Univ Hlth Network, Dept Microbiol, Sinai Hlth, Toronto, ON, Canada.Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada.Publ Hlth Ontario Labs, Toronto, ON, Canada.Chulalongkorn Univ, Biomed Imaging Grp, Fac Med, Bangkok, Thailand.Chulalongkorn Univ, Fac Med, Dept Radiol, Div Nucl Med, Bangkok, Thailand.
    1. Year: 2021
    2. Date: Oct
    3. Epub Date: 2021 09 15
  1. Journal: Nature medicine
  2. NATURE PORTFOLIO,
    1. 27
    2. 10
    3. Pages: 1735-1743
  3. Type of Article: Article
  4. ISSN: 1078-8956
  1. Abstract:

    Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.

    See More

External Sources

  1. DOI: 10.1038/s41591-021-01506-3
  2. PMID: 34526699
  3. WOS: 000696140200002

Library Notes

  1. Fiscal Year: FY2021-2022
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel