Skip NavigationSkip to Content

Comparative microsomal proteomics of a model lung cancer cell line NCI-H23 reveals distinct differences between molecular profiles of 3D and 2D cultured cells

  1. Author:
    Kaczmarczyk,Jan
    Roberts,Rhonda
    Luke,Brian
    Chan,King
    Van Wagoner, Carly M
    Felder, Robin A
    Saul, Richard G
    Simona, Colantonio
    Blonder,Josip
  2. Author Address

    Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA., Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA., Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA., Current address: The Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908, USA., Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,
    1. Year: 2021
    2. Date: Sep 28
  1. Journal: Oncotarget
    1. 12
    2. 20
    3. Pages: 2022-2038
  2. Type of Article: Article
  3. ISSN: 1949-2553
  1. Abstract:

    Lung cancer is the leading cause of cancer-related deaths in the USA and worldwide. Yet, about 95% of new drug candidates validated in preclinical phase eventually fail in clinical trials. Such a high attrition rate is attributed mostly to the inability of conventional two-dimensionally (2D) cultured cancer cells to mimic native three-dimensional (3D) growth of malignant cells in human tumors. To ascertain phenotypical differences between these two distinct culture conditions, we carried out a comparative proteomic analysis of a membrane fraction obtained from 3D- and 2D-cultured NSCLC model cell line NCI-H23. This analysis revealed a map of 1,166 (24%) protein species regulated in culture dependent manner, including differential regulation of a subset of cell surface-based CD molecules. We confirmed exclusive expression of CD99, CD146 and CD239 in 3D culture. Furthermore, label-free quantitation, targeting KRas proteoform-specific peptides, revealed upregulation of both wild type and monoallelic KRas4BG12C mutant at the surface of 3D cultured cells. In order to reduce the high attrition rate of new drug candidates, the results of this study strongly suggests exploiting base-line molecular profiling of a large number of patient-derived NSCLC cell lines grown in 2D and 3D culture, prior to actual drug candidate testing. Copyright: © 2021 Kaczmarczyk et al.

    See More

External Sources

  1. DOI: 10.18632/oncotarget.28072
  2. PMID: 34611477
  3. PMCID: PMC8487723
  4. PII : 28072

Library Notes

  1. Fiscal Year: FY2020-2021
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel