Skip NavigationSkip to Content

The structure of human beta-defensin-2 shows evidence of higher order oligomerization

  1. Author:
    Hoover, D. M.
    Rajashankar, K. R.
    Blumenthal, R.
    Puri, A.
    Oppenheim, J. J.
    Chertov, O.
    Lubkowski, J.
  2. Author Address

    NCI, Macromol Crystallog Lab, Program Struct Biol, Frederick Canc Res & Dev Ctr, NIH, Frederick, MD 21702 USA. NCI, Macromol Crystallog Lab, Program Struct Biol, Frederick Canc Res & Dev Ctr, NIH, Frederick, MD 21702 USA. NCI, SAIC Frederick, Frederick Canc Res & Dev Ctr, NIH, Frederick, MD 21702 USA. Brookhaven Natl Lab, Upton, NY 11973 USA. NCI, Lab Expt & Computat Biol, Frederick Canc Res & Dev Ctr, NIH, Frederick, MD 21702 USA. NCI, Mol Immunoregulat Lab, Frederick Canc Res & Dev Ctr, NIH, Frederick, MD 21702 USA. NCI, Intramural Res Support Program, SAIC Frederick, Frederick Canc Res & Dev Ctr, NIH, Frederick, MD 21702 USA.
    1. Year: 2000
  1. Journal: Journal of Biological Chemistry
    1. 275
    2. 42
    3. Pages: 32911-32918
  2. Type of Article: Article
  1. Abstract:

    Defensins are small cationic peptides that are crucial components of innate immunity, serving as both antimicrobial agents and chemoattractant molecules. The specific mechanism of antimicrobial activity involves permeabilization of bacterial membranes. It has been postulated that individual monomers oligomerize to form a pore through anionic membranes, although the evidence is only indirect. Here, we report two high resolution x-ray structures of human beta -defensin-2 (hBD2). The phases were experimentally determined by the multiwavelength anomalous diffraction method, utilizing a novel, rapid method of derivatization with halide ions. Although the shape and charge distribution of the monomer are similar to those of other defensins, an additional alpha - helical region makes this protein topologically distinct from the mammalian alpha- and beta -defensin structures reported previously. hBD2 forms dimers topologically distinct from that of human neutrophil peptide-3. The quaternary octameric arrangement of hBD2 is conserved in two crystal forms. These structures provide the first detailed description of dimerization of beta -defensins, and we postulate that the mode of dimerization of hBD2 is representative of other beta - defensins. The structural and electrostatic properties of the hBD2 octamer support an electrostatic charge-based mechanism of membrane permeabilization by beta -defensins, rather than a mechanism based on formation of bilayer-spanning pores.

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel