Skip NavigationSkip to Content

Verification of CRISPR editing and finding transgenic inserts by Xdrop indirect sequence capture followed by short- and long-read sequencing

  1. Author:
    Blondal, Thorarinn
    Gamba, Cristina
    Jagd, Lea Moller
    Su,Ling
    Demirov,Dimiter
    Guo,Amber
    Johnston, Camille M.
    Riising, Eva M.
    Wu,Xiaolin
    Mikkelsen, Marie J.
    Szabova,Ludmila
    Mouritzen, Peter
  2. Author Address

    Samplix ApS, Mileparken 28, Herlev, Denmark.Frederick Natl Lab Canc Res, Leidos Biomed Res Inc, Canc Res Technol Program, Frederick, MD USA.NCI, Ctr Adv Preclin Res, Frederick Natl Lab Canc Res, Frederick, MD 21701 USA.
    1. Year: 2021
    2. Date: Jul
    3. Epub Date: 2021 Feb 11
  1. Journal: Methods
  2. ACADEMIC PRESS INC ELSEVIER SCIENCE,
    1. 191
    2. Pages: 68-77
  3. Type of Article: Article
  4. ISSN: 1046-2023
  1. Abstract:

    Validation of CRISPR-Cas9 editing typically explores the immediate vicinity of the gene editing site and distal off-target sequences, which has led to the conclusion that CRISPR-Cas9 editing is very specific. However, an increasing number of studies suggest that on-target unintended editing events like deletions and insertions are relatively frequent but unfortunately often missed in the validation of CRISPR-Cas9 editing. The deletions may be several kilobases-long and only affect one allele. The gold standard in molecular validation of gene editing is direct sequencing of relatively short PCR amplicons. This approach allows the detection of small editing events but fails in detecting large rearrangements, in particular when only one allele is affected. Detection of large rearrangements requires that an extended region is analyzed and the characterization of events may benefit from long-read sequencing. Here we implemented Xdrop (TM), a new microfluidic technology that allows targeted enrichment of long regions (similar to 100 kb) using just a single standard PCR primer set. Sequencing of the enriched CRISPR-Cas9 gene-edited region in four cell lines on long- and short-read sequencing platforms unravelled unknown and unintended genome editing events. The analysis revealed accidental kilobases-large insertions in three of the cell lines, which remained undetected using standard procedures. We also applied the targeted enrichment approach to identify the integration site of a transgene in a mouse line. The results demonstrate the potential of this technology in gene editing validation as well as in more classic transgenics.

    See More

External Sources

  1. DOI: 10.1016/j.ymeth.2021.02.003
  2. PMID: 33582298
  3. WOS: 000660517600008

Library Notes

  1. Fiscal Year: FY2020-2021
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel