Skip NavigationSkip to Content

Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5

  1. Author:
    Hug, P.
    Lin, H. M. J.
    Korte, T.
    Xiao, X. D.
    Dimitrov, D. S.
    Wang, J. M.
    Puri, A.
    Blumenthal, R.
  2. Author Address

    Blumenthal R NCI, Lab Expt & Computat Biol, Div Basic Sci, NIH Bld 469,Rm 213 Frederick, MD 21702 USA NCI, Lab Expt & Computat Biol, Div Basic Sci, NIH Frederick, MD 21702 USA NCI, Mol Immunoregulat Lab, Div Basic Sci, NIH Frederick, MD 21702 USA
    1. Year: 2000
  1. Journal: Journal of Virology
    1. 74
    2. 14
    3. Pages: 6377-6385
  2. Type of Article: Article
  1. Abstract:

    Treatment of human osteosarcoma cells, expressing CD4 and various chemokine receptors, with the glucosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP), blocked target membrane glycosphingolipid (GSL) biosynthesis and reduced the susceptibility of cells to infection and fusion mediated by envelope glycoproteins from a variety of human immunodeficiency virus type 1 (HIV-1) isolates that utilize CXCR4 and/or CCR5. PPMP treatment of the cell lines did not significantly change the cell surface expression of CD4, CXCR4, and/or CCR5, nor did it alter the chemokine receptor association with CD4. PPMP-treated cells exhibited no changes in chemokine-induced Ca2+ mobilization and chemotaxis. However, massive envelope glycoprotein conformational changes triggered by CD4 and the appropriate chemokine receptor on the target membrane were inhibited when the target cells were treated,vith PPMP. Addition of various purified GSLs to PPMP-treated target cells showed that for all isolates tested, globotriaosylceramide (Gb3) was the most potent GSL in restoring the fusion susceptibility of target cells with cells expressing HIV-1 envelope glycoproteins; addition of the monosialoganglioside GM3 yielded a slight enhancement of fusion susceptibility. Our data are consistent with the notion that a limited number of specific GSL species serve as crucial elements in organizing gp120-gp41, CD4, and an appropriate chemokine receptor into a membrane fusion complex. [References: 47]

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel