Skip NavigationSkip to Content

ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence

  1. Author:
    Ha, L.
    Ichikawa, T.
    Anver, M.
    Dickins, R.
    Lowe, S.
    Sharpless, N. E.
    Krimpenfort, P.
    DePinho, R. A.
    Bennett, D. C.
    Sviderskaya, E. V.
    Merlino, G.
  2. Author Address

    NCI, Lab Canc Biol & Genet, Bethesda, MD 20892 USA. Natl Canc Inst, Pathol Histotechnol Lab, SAIC, Frederick Canc Res & Dev Ctr, Frederick, MD 21702 USA. Cold Spring Harbor Lab, Howard Hughes Med Inst, Cold Spring Harbor, NY 11724 USA. Univ N Carolina, Sch Med, Dept Med, Chapel Hill, NC 27599 USA. Univ N Carolina, Sch Med, Dept Genet, Chapel Hill, NC 27599 USA. Netherlands Canc Inst, Div Mol Genet, NL-1066 CX Amsterdam, Netherlands. Harvard Univ, Sch Med, Ctr Appl Canc Sci, Dept Med Oncol, Boston, MA 02115 USA. Harvard Univ, Sch Med, Ctr Appl Canc Sci, Dept Med, Boston, MA 02115 USA. Harvard Univ, Sch Med, Ctr Appl Canc Sci, Dept Genet, Boston, MA 02115 USA. Harvard Univ, Sch Med, Belfer Fdn Inst Innovat Canc Sci, Dana Farber Canc Inst, Boston, MA 02115 USA. Univ London, Div Basic Med Sci, London SW17 0RE, England.;Merlino, G, NCI, Lab Canc Biol & Genet, Bethesda, MD 20892 USA.;esviders@sgul.ac.uk gmerlino@helix.nih.gov
    1. Year: 2007
    2. Date: Jun
  1. Journal: Proceedings of the National Academy of Sciences of the United States of America
    1. 104
    2. 26
    3. Pages: 10968-10973
  2. Type of Article: Article
  3. ISSN: 0027-8424
  1. Abstract:

    inactivation of the p53 pathway represents the most common molecular defect of human cancer. But in the setting of melanoma, a highly aggressive and invariably fatal malignancy in its advanced disseminated form, mutation/deletion of p53 is relatively rare, whereas its positive regulator ARF is often lost. Here, we show that genetic deficiency in Arf but not p53 facilitates rapid development of melanoma in a genetically engineered mouse model. This difference is accounted for, at least in part, by the unanticipated observation that, unlike fibroblasts, senescence control in melanocytes is strongly regulated by Arf and not p53. Moreover, oncogenic NRAS collaborates with deficiency in Arf, but not p53, to fully transform melanocytes. Our data demonstrate that ARF and p53, although linked in a common pathway, suppress tumorigenesis through distinct, lineage-dependent mechanisms and suggest that ARF helps restrict melanoma progression by executing the oncogene-induced senescence program in benign nevi. Thus, therapeutics designed to restore wild-type p53 function may be insufficient to counter melanoma and other malignancies in which ARF holds p53-independent tumor suppressor activity.

    See More

External Sources

  1. DOI: 10.1073/pnas.0611638104
  2. WOS: 000247641900041

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel