Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 20 results.
User Information
Export Records
  1. 1.   Data imbalance in drug response prediction: multi-objective optimization approach in deep learning setting
  2. Narykov, Oleksandr; Zhu, Yitan; Brettin, Thomas; Evrard,Yvonne; Partin, Alexander; Xia, Fangfang; Shukla, Maulik; Vasanthakumari, Priyanka; Doroshow, James H; Stevens, Rick L
  3. Briefings in Bioinformatics. 2025, Mar 04; 26(2):
  1. 2.   Systematic characterization of multi-omics landscape between gut microbial metabolites and GPCRome in Alzheimer's disease
  2. Qiu, Yunguang; Hou, Yuan; Gohel, Dhruv; Zhou, Yadi; Xu, Jielin; Bykova, Marina; Yang, Yuxin; Leverenz, James B; Pieper, Andrew A; Nussinov,Ruth; Caldwell, Jessica Z K; Brown, J Mark; Cheng, Feixiong
  3. Cell Reports. 2024, Apr 21; 43(5): 114128.
  1. 3.   A Comprehensive Investigation of Active Learning Strategies for Conducting Anti-Cancer Drug Screening
  2. Vasanthakumari, Priyanka; Zhu, Yitan; Brettin, Thomas; Partin, Alexander; Shukla, Maulik; Xia, Fangfang; Narykov, Oleksandr; Weil,Michael; Stevens, Rick L
  3. Cancers. 2024, Jan 26; 16(3):
  1. 4.   Integration of Computational Docking into Anti-Cancer Drug Response Prediction Models
  2. Narykov, Oleksandr; Zhu, Yitan; Brettin, Thomas; Evrard,Yvonne; Partin, Alexander; Shukla, Maulik; Xia, Fangfang; Clyde, Austin; Vasanthakumari, Priyanka; Doroshow, James H; Stevens, Rick L
  3. Cancers. 2023, Dec 21; 16(1):
  1. 5.   Machine Learning Informs RNA-Binding Chemical Space
  2. Yazdani, Kamyar; Jordan, Deondre; Yang,Mo; Fullenkamp,Chris; Schneekloth,Jay; Calabrese,Dave; Boer, Robert E; Hilimire, Thomas A; Allen, Timothy E H; Khan, Rabia T
  3. Angewandte Chemie (International ed. in English). 2022, Dec 30;
  1. 6.   Artificial Immune Cell, AI-cell, a New Tool to Predict Interferon Production by Peripheral Blood Monocytes in Response to Nucleic Acid Nanoparticles
  2. Chandler, Morgan; Jain, Sankalp; Halman, Justin; Hong, Enping; Dobrovolskaia,Marina; Zakharov, Alexey V; Afonin, Kirill A
  3. Small (Weinheim an der Bergstrasse, Germany). 2022, Oct 10; e2204941.
  1. 7.   Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation
  2. Stahlberg,Eric; Abdel-Rahman, Mohamed; Aguilar, Boris; Asadpoure, Alireza; Beckman, Robert A; Borkon,Lynn; Bryan, Jeffrey N; Cebulla, Colleen M; Chang, Young Hwan; Chatterjee, Ansu; Deng, Jun; Dolatshahi, Sepideh; Gevaert, Olivier; Greenspan, Emily J; Hao, Wenrui; Hernandez-Boussard, Tina; Jackson, Pamela R; Kuijjer, Marieke; Lee, Adrian; Macklin, Paul; Madhavan, Subha; McCoy, Matthew D; Mohammad Mirzaei, Navid; Razzaghi, Talayeh; Rocha, Heber L; Shahriyari, Leili; Shmulevich, Ilya; Stover, Daniel G; Sun, Yi; Syeda-Mahmood, Tanveer; Wang, Jinhua; Wang, Qi; Zervantonakis, Ioannis
  3. Frontiers in Digital Health. 2022, Oct 6; 4: 1007784.
  1. 8.   Theoretical classification of exchange geometries from the perspective of NMR relaxation dispersion
  2. Chao,Fa-An; Zhang,Yue; Byrd,Robert
  3. Journal of magnetic resonance (San Diego, Calif. : 1997). 2021, Jul; 328
  1. 9.   Learning curves for drug response prediction in cancer cell lines
  2. Partin, Alexander; Brettin, Thomas; Evrard,Yvonne; Zhu, Yitan; Yoo, Hyunseung; Xia, Fangfang; Jiang, Songhao; Clyde, Austin; Shukla, Maulik; Fonstein, Michael; Doroshow, James H.; Stevens, Rick L.
  3. BMC bioinformatics. 2021, May 17; 22(1):
  1. 10.   A Deep Learning Pipeline for Nucleus Segmentation
  2. Zaki,George; Gudla, Prabhakar R; Lee, Kyunghun; Kim, Justin; Ozbun, Laurent; Shachar, Sigal; Gadkari, Manasi; Sun, Jing; Fraser, Iain D C; Franco, Luis M; Misteli, Tom; Pegoraro, Gianluca
  3. CYTOMETRY PART A. 2020, NOV 19;
  1. 11.   Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions
  2. Liu, Ge; Carter, Brandon; Bricken, Trenton; Jain, Siddhartha; Viard,Mathias; Carrington,Mary; Gifford, David K
  3. Cell systems. 2020, AUG 26; 11(2): 131-144.e6.
  1. 12.   Accelerating Therapeutics for Opportunities in Medicine: A Paradigm Shift in Drug Discovery
  2. Hinkson, Izumi V; Madej,Benjamin; Stahlberg,Eric
  3. Frontiers in pharmacology. 2020, Jun 30; 11: 770.
  1. 13.   Computational network biology: Data, models, and applications
  2. Liu, Chuang; Ma, Yifang; Zhao, Jing; Nussinov,Ruth; Zhang, Yi-Cheng; Cheng, Feixiong; Zhang, Zi-Ke
  3. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS. 2020, MAR 3; 846: 1-66.
  1. 14.   Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology
  2. Turner, Oliver C; Aeffner, Famke; Bangari, Dinesh S; High, Wanda; Knight, Brian; Forest, Tom; Cossic, Brieuc; Himmel, Lauren E; Rudmann, Daniel G; Bawa, Bhupinder; Muthuswamy, Anantharaman; Aina, Olulanu H; Edmondson,Elijah; Saravanan, Chandrassegar; Brown, Danielle L; Sing, Tobias; Sebastian, Manu M
  3. Toxicologic pathology. 2019, Oct 23; 192623319881401.
  1. 15.   Predicting tumor cell line response to drug pairs with deep learning
  2. Xia, Fangfang; Shukla, Maulik; Brettin, Thomas; Garcia-Cardona, Cristina; Cohn, Judith; Allen, Jonathan E.; Maslov, Sergei; Holbeck, Susan L.; Doroshow, Jim; Evrard, Yvonne; Stahlberg, Eric; Stevens, Rick L.
  3. BMC bioinformatics. 2018, Dec 21; 19(Supp 18):
  1. 16.   Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges
  2. Elhalawani, Hesham; Lin, Timothy A.; Volpe, Stefania; Mohamed, Abdallah S. R.; White, Aubrey L.; Zafereo, James; Wong, Andrew J.; Berends, Joel E.; AboHashem, Shady; Williams, Bowman; Aymard, Jeremy M.; Kanwar, Aasheesh; Perni, Subha; Rock, Crosby D.; Cooksey, Luke; Campbell, Shauna; Yang, Pei; Ger, Rachel B.; Cardenas, Carlos E.; Fave, Xenia J.; Sansone, Carlo; Piantadosi, Gabriele; Marrone, Stefano; Liu, Rongjie; Huang, Chao; Yu, Kaixian; Li, Tengfei; Yu, Yang; Zhang, Youyi; Zhu, Hongtu; Morris, Jeffrey S.; Baladandayuthapani, Veerabhadran; Shumway, John W.; Ghosh, Alakonanda; Poehlmann, Andrei; Phoulady, Hady A.; Goyal, Vibhas; Canahuate, Guadalupe; Marai, G. Elisabeta; Vock, David; Lai, Stephen Y.; Mackin, Dennis S.; Court, Laurence E.; Freymann, John; Farahani, Keyvan; Kaplathy-Cramer, Jayashree; Fuller, Clifton D.
  3. Frontiers in Oncology. 2018, Aug 17; 8: 294.
  1. 17.   RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers
  2. Bindewald, E.; Shapiro, B. A.
  3. Rna-a Publication of the Rna Society. 2006 12(3): 342-352.
  1. 18.   A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer
  2. Di Natale, Francesco; Bhatia, Harsh; Carpenter, Timothy S.; Neale, Chris; Kokkila-Schumacher, Sara; Oppelstrup, Tomas; Stanton, Liam; Zhang, Xiaohua; Sundram, Shiv; Scogland, Thomas R. W.; Dharuman, Gautham; Surh, Michael P.; Yang, Yue; Misale, Claudia; Schneidenbach, Lars; Costa, Carlos; Kim, Changhoan; D'Amora, Bruce; Gnanakaran, Sandrasegaram; Nissley,Dwight; Streitz, Fred; Lightstone, Felice C.; Bremer, Peer-Timo; Glosli, James N.; Ingolfsson, Helgi I.
  3. 2019; .
  1. 19.   cTULIP: application of a human-based RNA-seq primary tumor classification tool for cross-species primary tumor classification in canine
  2. Long, Jiaxin; Ganakammal, Satishkumar Ranganathan; Jones,Sara; Kothandaraman, Harish; Dhawan, Deepika; Ogas, Joe; Knapp, Deborah W; Beyers, Matthew; Lanman, Nadia A
  3. Frontiers in Oncology. 2023 13: 1216892.
  1. 20.   Improved detection of low-frequency within-host variants from deep sequencing: A case study with human papillomavirus
  2. Mishra,Sambit; Nelson, Chase W; Zhu, Bin; Pinheiro, Maisa; Lee,Hyo Jung; Dean, Michael; Burdett,Laurie; Yeager,Meredith; Mirabello, Lisa
  3. Virus Evolution. 2024 10(1): veae013.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel