Skip NavigationSkip to Content

High-Mannose But Not Complex-Type Glycosylation of Tetherin Is Required for Restriction of HIV-1 Release

  1. Author:
    Waheed, Abdul
    Gitzen, Ariana
    Swiderski, Maya
    Freed, Eric
  2. Author Address

    Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA. waheedab@mail.nih.gov., Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA. algitzen2@gmail.com., Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA. swiderskimaya@gmail.com., Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Bldg. 535, Room 108B, 1050 Boyles St., Frederick, MD 21702-1201, USA. efreed@mail.nih.gov.,
    1. Year: 2018
    2. Date: Jan 05
    3. Epub Date: 2018 01 05
  1. Journal: Viruses
    1. 10
    2. 1
    3. Pages: E26
  2. Type of Article: Article
  3. Article Number: ARTN 26
  1. Abstract:

    Tetherin is an interferon-inducible antiviral protein that inhibits the release of a broad spectrum of enveloped viruses by retaining virions at the surface of infected cells. While the role of specific tetherin domains in antiviral activity is clearly established, the role of glycosylation in tetherin function is not clear. In this study, we carried out a detailed investigation of this question by using tetherin variants in which one or both sites of N-linked glycosylation were mutated (N65A, N92A, and N65,92A), and chemical inhibitors that prevent glycosylation at specific stages of oligosaccharide were added or modified. The single N-linked glycosylation mutants, N65A and N92A, efficiently inhibited the release of Vpu-defective human immunodeficiency virus type 1 (HIV-1). In contrast, the non-glycosylated double mutant, N65,92A, lost its ability to block HIV-1 release. The inability of the N65,92A mutant to inhibit HIV-1 release is associated with a lack of cell-surface expression. A role for glycosylation in cell-surface tetherin expression is supported by tunicamycin treatment, which inhibits the first step of N-linked glycosylation and impairs both cell-surface expression and antiviral activity. Inhibition of complex-type glycosylation with kifunensine, an inhibitor of the oligosaccharide processing enzyme mannosidase 1, had no effect on either the cell-surface expression or antiviral activity of tetherin. These results demonstrate that high-mannose modification of a single asparagine residue is necessary and sufficient, while complex-type glycosylation is dispensable, for cell-surface tetherin expression and antiviral activity.

    See More

External Sources

  1. DOI: 10.3390/v10010026
  2. PMID: 29303997
  3. WOS: 000424414900026
  4. PII : v10010026

Library Notes

  1. Fiscal Year: FY2017-2018
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel