Skip NavigationSkip to Content

The 4-[N-methyl-N-(2,2,2-trifluoroacetyl)amino]butyl group as an alternative to the 2-cyanoethyl group for phosphate protection in the synthesis of oligodeoxyribonucleotides

  1. Author:
    Wilk, A.
    Grajkowski, A.
    Phillips, L. R.
    Beaucage, S. L.
  2. Author Address

    Beaucage SL US FDA, Ctr Biol Evaluat & Res, Div Hematol Prod 8800 Rockville Pike Bethesda, MD 20892 USA US FDA, Ctr Biol Evaluat & Res, Div Hematol Prod Bethesda, MD 20892 USA NCI, Lab Drug Discovery Res & Dev, Dev Therapeut Program Frederick, MD 21701 USA
    1. Year: 1999
  1. Journal: Journal of Organic Chemistry
    1. 64
    2. 20
    3. Pages: 7515-7522
  2. Type of Article: Article
  1. Abstract:

    The 4-[N-methyl-N-(2,2,2-trifluoroacetyl)amino]butyl group for phosphate protection in the synthesis of oligodeoxyribonucleotides has been developed to completely prevent nucleobase alkylation by acrylonitrile that could potentially occur upon deprotection of the traditional 2-cyanoethyl phosphate protecting group. The properties of this new phosphate protecting group were evaluated using the model phosphotriester 9. The mechanism of phosphate deprotection was studied by treating 9 with concentrated NH4OH. NMR analysis,of the deprotection reaction demonstrated that cleavage of the N-trifluoroacetyl group is rate-limiting. The resulting phosphotriester intermediate 13 was also shown to undergo rapid cyclodeesterification to produce O,O-diethyl phosphate 15 and N-methylpyrrolidine -16 (Scheme 2). Given the facile removal of the 4-[N-methyl-N-(2,2,2-trifluoroacetyl)amino]butyl phosphate protecting group under mild basic conditions, its utilization in oligonucleotide synthesis began with the preparation of the deoxyribonucleoside phosphoramidites 4a-d (Scheme 3). The coupling efficiency of 4a-d and conventional a-cyanoethyl deoxyribonucleoside phosphoramidites 24a-d was then compared in the solid-phase synthesis of the 20-mer d(ATCCGTAGCTAAGGTCATGC). As previously observed in the deprotection of 9, the 4-[N-methyl,N-(2,2,2-trifluoroacetyl)amino]butyl phosphate protecting groups were easily and completely removed from the oligonucleotide by using either concentrated NH4OH or pressurized ammonia gas. Analysis of the deprotected oligomer by polyacrylamide gel electrophoresis (Figure 3) indicated that the phosphoramidites 4a-d are as efficient as the 2-cyanoethyl phosphoramidites 24a-d in the synthesis of the 20-mer. Furthermore, following digestion of the crude 20-mer by snake venom phosphodiesterase and bacterial alkaline phosphatase, HPLC analysis showed complete hydrolysis to individual nucleosides and no detectable nucleobase modification. [References: 34]

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel