Skip NavigationSkip to Content

UCN-01 enhances the in vitro toxicity of clinical agents in human tumor cell lines

  1. Author:
    Monks, A.
    Harris, E. D.
    Vaigro-Wolff, A.
    Hose, C. D.
    Connelly, J. W.
    Sausville, E. A.
  2. Author Address

    Monks A NCI, SAIC Frederick POB B,Bldg 432 Frederick, MD 21702 USA NCI, SAIC Frederick Frederick, MD 21702 USA NCI, Dev Therapeut Program, DCTD Rockville, MD USA
    1. Year: 2000
  1. Journal: Investigational New Drugs
    1. 18
    2. 2
    3. Pages: 95-107
  2. Type of Article: Article
  1. Abstract:

    UCN-01 is undergoing Phase I evaluation and is a candidate for combination strategies in the clinic. UCN-01 has been shown to have a variety of effects on cellular targets and the cell cycle. It has also been reported to sensitize cells to several clinical drugs in vitro, possibly in a manner related to p53 status. Thus, combinations of UCN-01 with a series of clinical agents in variety of cell lines have been investigated in vitro. Certain cell lines demonstrated synergistic interactions with combinations of UCN-01 (20-150 nM) and thiotepa, mitomycin C, cisplatin, melphalan, topotecan, gemcitabine, fludarabine or 5-fluorouracil. In contrast, UCN-01 combinations with the antimitotic agents, paclitaxel and vincristine, or topoisomerase II inhibitors, adriamycin and etoposide, did not result in synergy, only in additive toxicity. Cells with non-functional p53 were significantly more susceptible to the supra-additive effects of certain DNA-damaging agents and UCN-01 combinations, than cells expressing functional p53 activity. In contrast, there was no significant relationship between p53 status and susceptibility to synergy between antimetabolites and UCN-01. The mechanism behind the observed synergy appeared unrelated to effects on protein kinase C or abrogation of the cell cycle in G2. Moreover, increased apoptosis did not fully explain the supradditive response. These data indicate that UCN-01 sensitizes a variety of cell lines to certain DNA-damaging agents (frequently covalent DNA-binding drugs) and antimetabolites in vitro, but the mechanism underlying this interaction remains undefined. [References: 29]

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel