Skip NavigationSkip to Content

Detection of Antigen Presentation by Murine Bone Marrow-Derived Dendritic Cells After Treatment with Nanoparticles

  1. Author:
    Hong, Enping
    Dobrovolskaia,Marina
  2. Author Address

    Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA., Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA. marina@mail.nih.gov.,
    1. Year: 2024
  1. Journal: Methods in Molecular Biology (Clifton, N.J.)
    1. 2789
    2. Pages: 161-169
  2. Type of Article: Article
  1. Abstract:

    Nanoparticles are frequently considered in vaccine applications due to their ability to co-deliver multiple antigens and adjuvants to antigen-presenting cells. Some nanoparticles also have intrinsic adjuvant properties that further enhance their ability to stimulate immune cells. The delivery of tumor-specific antigens to antigen-presenting cells (APCs) with subsequent antigenic peptide presentation in the context of class I major histocompatibility complex (MHC-I) molecules represents an essential effort in developing nanotechnology-based cancer vaccines. Experimental models are, therefore, needed to gauge the efficiency of nanotechnology carriers in achieving peptide antigen delivery to APCs and presentation in the context of MHC-I. The assay described herein utilizes a model antigen ovalbumin and model APCs, murine bone marrow-derived dendritic cells. The 25-D1.16 antibody, specific to the ovalbumin (OVA) MHC-I peptide SIINFEKL, recognizes this peptide presented in the context of the murine H2-Kb class I MHC molecule, allowing the presentation of this antigen on APCs to be detected by flow cytometry after nanoparticle delivery. © 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

    See More

External Sources

  1. DOI: 10.1007/978-1-0716-3786-9_17
  2. PMID: 38507002

Library Notes

  1. Fiscal Year: FY2023-2024
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel