Skip NavigationSkip to Content

Mining the National Cancer Institute's tumor-screening database: Identification of compounds with similar cellular activities

  1. Author:
    Rabow, A. A.
    Shoemaker, R. H.
    Sausville, E. A.
    Covell, D. G.
  2. Author Address

    NCI, Sci Applicat Int Corp, NIH, DCTD, Frederick, MD 21702 USA. NCI, Sci Applicat Int Corp, NIH, DCTD, Frederick, MD 21702 USA. NCI, Dev Therapeut Program, NIH, DCTD, Frederick, MD 21702 USA. Rabow AA NCI, Sci Applicat Int Corp, NIH, DCTD, Frederick, MD 21702 USA.
    1. Year: 2002
  1. Journal: Journal of Medicinal Chemistry
    1. 45
    2. 4
    3. Pages: 818-840
  2. Type of Article: Review
  1. Abstract:

    In an effort to enhance access to information available in the National Cancer Institute's (NCI) anticancer drug-screening database, a new suite of Internet accessible (http://spheroid.ncifcrf.gov) computational tools has been assembled for self-organizing map-based (SOM) cluster analysis and data visualization. A range of analysis questions were initially addressed to evaluate improvements in SOM cluster quality based on the data-conditioning procedures of Z-score normalization, capping, and treatment of missing data as well as completeness of drug cell-screening data. These studies established a foundation for SOM cluster analysis of the complete set of NCIs publicly available antitumor drug- screening data. This analysis identified relationships between chemotypes of screened agents and their effect on four major classes of cellular activities: mitosis, nucleic acid synthesis, membrane transport and integrity, and phosphatase- and kinase-mediated cell cycle regulation. Validations of these cellular activities, obtained from literature sources, found (i) strong evidence supporting within cluster memberships and shared cellular activity, (ii) indications of compound selectivity between various types of cellular activity, and (iii) strengths and weaknesses of the NCI's antitumor drug screen data for assigning compounds to these classes of cellular activity. Subsequent analyses of averaged responses within these tumor panel types find a strong dependence on chemotype for coherence among cellular response patterns. The advantages of a global analysis of the complete screening data set are discussed.

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel