Skip NavigationSkip to Content

Methods for high-density admixture mapping of disease genes

  1. Author:
    Patterson, N.
    Hattangadi, N.
    Lane, B.
    Lohmueller, K. E.
    Hafler, D. A.
    Oksenberg, J. R.
    Hauser, S. L.
    Smith, M. W.
    O'Brien, S. J.
    Altshuler, D.
    Daly, M. J.
    Reich, D.
  2. Author Address

    Reich, D, Harvard Univ, Sch Med, Dept Genet, New Res Bldg,77 Ave Louis Pasteur, Boston, MA 02115 USA Broad Inst, Program Med & Populat Genet, Cambridge, MA USA. Whitehead Inst Biomed Res, Cambridge, MA 02142 USA. Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. Harvard Univ, Sch Med, Lab Mol Immunol, Boston, MA USA. Massachusetts Gen Hosp, Dept Med, Boston, MA 02114 USA. Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA. Brigham & Womens Hosp, Ctr Neurol Dis, Boston, MA 02115 USA. Georgetown Univ, Washington, DC USA. Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. NCI, Lab Genom Divers, Frederick, MD 21701 USA. Sci Applicat Int Corp, Basic Res Program, Frederick, MD USA.
    1. Year: 2004
  1. Journal: American Journal of Human Genetics
    1. 74
    2. 5
    3. Pages: 979-1000
  2. Type of Article: Article
  1. Abstract:

    Admixture mapping (also known as "mapping by admixture linkage disequilibrium," or MALD) has been proposed as an efficient approach to localizing disease-causing variants that differ in frequency ( because of either drift or selection) between two historically separated populations. Near a disease gene, patient populations descended from the recent mixing of two or more ethnic groups should have an increased probability of inheriting the alleles derived from the ethnic group that carries more disease-susceptibility alleles. The central attraction of admixture mapping is that, since gene flow has occurred recently in modern populations ( e. g., in African and Hispanic Americans in the past 20 generations), it is expected that admixture-generated linkage disequilibrium should extend for many centimorgans. High-resolution marker sets are now becoming available to test this approach, but progress will require ( a) computational methods to infer ancestral origin at each point in the genome and (b) empirical characterization of the general properties of linkage disequilibrium due to admixture. Here we describe statistical methods to estimate the ancestral origin of a locus on the basis of the composite genotypes of linked markers, and we show that this approach accurately estimates states of ancestral origin along the genome. We apply this approach to show that strong admixture linkage disequilibrium extends, on average, for 17 cM in African Americans. Finally, we present power calculations under varying models of disease risk, sample size, and proportions of ancestry. Studying similar to2,500 markers in similar to2,500 patients should provide power to detect many regions contributing to common disease. A particularly important result is that the power of an admixture mapping study to detect a locus will be nearly the same for a wide range of mixture scenarios: the mixture proportion should be 10%-90% from both ancestral populations

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel