Skip NavigationSkip to Content

Three Dimensional Structure of the Soybean Agglutinin-Gal/Galnac Complexes By Homology Modeling

  1. Author:
    Rao, V. S. R.
    Lam, K.
    Qasba, P. K.
    1. Year: 1998
  1. Journal: Journal of Biomolecular Structure & Dynamics
    1. 15
    2. 5
    3. Pages: 853-860
  2. Type of Article: Article
  1. Abstract:

    Complexes of soybean agglutinin (SBA) with galactose (Gal) and N-acetyl galactosamine (GalNAc) have been modeled based on its homology to erythrina corallodendron (EcorL) lectin. The three dimensional structure of SEA-Gal modeled with homology techniques agrees well with SBA-(beta-LacNAc)(2)Gal-R complex determined by X-ray crystallographic techniques at the beta-sheet regions and the regions where Ca2+ and Mn2+ ions bind. However, significant deviations have been observed between the modeled and the X-ray structures, particularly at the loop regions where the polypeptide chain could not be unequivocally traced in the X-ray structure. The hydrogen bonding scheme, predicted from the homology model, shows that the invariant residues i.e. Asp, Gly, Asn, and aromatic residues (Phe) found in all other legume lectins, bind Gal, slightly in a different way than reported in X-ray structure of SBA-pentasaccharide complex. The higher binding affinity of GalNAc over Gal to SBA is due to additional hydrophobic interactions with Tyr107 rather than a hydrogen bond between N-acetamide group of the sugar and the side chain of Asp88 as suggested from X-ray crystal structure studies. Our modeling also suggest that the variation in the length of the loop D observed among galactose binding legume lectins may not have any effect on the binding of sugar at the monosaccharide specific site of the lectins. [References: 18]

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel