Skip NavigationSkip to Content

Microarray analysis of epigenetic silencing of gene expression in the KAS-6/1 multiple myeloma cell line

  1. Author:
    Pompeia, C.
    Hodge, D. R.
    Plass, C.
    Wu, Y. Z.
    Marquez, V. E.
    Kelley, J. A.
    Farrar, W. L.
  2. Author Address

    Farrar, WL, NCI, Frederick Canc Res & Dev Ctr, Mol Immunoregulat Lab, 1050 Boyles St,Bldg 560,Room 31-68, Frederick, MD 21702 USA NCI, Frederick Canc Res & Dev Ctr, Mol Immunoregulat Lab, Frederick, MD 21702 USA. NCI, Frederick Canc Res & Dev Ctr, Med Chem Lab, Frederick, MD 21702 USA. Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Div Human Canc Genet, Columbus, OH 43210 USA.
    1. Year: 2004
  1. Journal: Cancer Research
    1. 64
    2. 10
    3. Pages: 3465-3473
  2. Type of Article: Article
  1. Abstract:

    The epigenetic control of gene transcription in cancer has been the theme of many recent studies and therapeutic approaches. Carcinogenesis is frequently associated with hypermethylation and consequent down-regulation of genes that prevent cancer, e.g., those that control cell proliferation and apoptosis. We used the demethylating drug zebularine to induce changes in DNA methylation, then examined patterns of gene expression using cDNA array analysis and Restriction Landmark Genomic Scanning followed by RNase protection assay and reverse transcription-PCR to confirm the results. Microarray studies revealed that many genes were epigenetically regulated by methylation. We concluded that methylation decreased the expression of, or silenced, several genes, contributing to the growth and survival of multiple myeloma cells. For example, a number of genes (BAD, BAK, BIK, and BAX) involved in apoptosis were found to be suppressed by methylation. Sequenced methylation-regulated DNA fragments identified by Restriction Landmark Genomic Scanning were found to contain CpG islands, and some corresponded to promoters of genes that were regulated by methylation. We also observed that after the removal of the demethylating drug, the addition of interleukin 6 restored CpG methylation and re-established previously silenced gene patterns, thus implicating a novel role of interleukin 6 in processes regulating epigenetic gene repression and carcinogenesis

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel