Skip NavigationSkip to Content

Ion-Rna Interactions in the Rna Pseudoknot of a Ribosomal Frameshifting Site - Molecular Modeling Studies

  1. Author:
    Le, S. Y.
    Chen, J. H.
    Pattabiraman, N.
    Maizel, J. V.
    1. Year: 1998
  1. Journal: Journal of Biomolecular Structure & Dynamics
    1. 16
    2. 1
    3. Pages: 1-11
  2. Type of Article: Article
  1. Abstract:

    The three-dimensional (3-D) structure of a RNA pseudoknot that causes the efficient ribosomal frameshifting in the gag-pro region of mouse mammary tumor virus (MMTV) has been determined recently by nuclear magnetic resonance (NMR) studies (9). But since the structure refinement in the studies did not use metal ions and waters, it is not clear how metal ions participate in the stabilization of the pseudoknot, and what kind of ion-RNA interactions dominate in the tertiary contacts for the RNA pseudoknotting. Based on the reported structure data of the pseudoknot VPK of MMTV (9), we gradually refined the structure by restrained molecular dynamics (MD) using NMR distance restraints (17). Restrained MD simulation of the RNA pseudoknot was performed with sodium ions and water molecules. Our results are in good agreement with known NMR data and delineate the importance of the metal ion coordination in the stability of the pseudoknot. In the non-coaxially stacking pseudoknot, stem 1 (S1), stem 2 (S2), and the intervening A14 involves unconventional stacking of base pairs coordinated by Na+ and/or bridging water molecules. A6 and G7 of loop L1 make a perfect base stacking in the major groove and are further stabilized by coordinated Na+ ions and water molecules. The first 4-nucleotide (nt) ACUC of loop L2 form a sharp turn and the following 4-nt AAAA cross the minor groove of S1 and are steadied by interactions with the nucleotides of S1, bridging water molecules and coordinated Na+ ions. Our studies suggest that the metal ion plays a crucial role in the RNA pseudoknotting of VPK. In the stacking interior of S1 and S2, the Na+ ion is positioned in the major groove and interacts directly with the carbonyl group O-6 of G28 and carbonyl group O-4 of U13 in the wobble base pair U13:G28. The ion-RNA interactions in MMTV VPK not only stabilize the RNA pseudoknot but also modify the electrostatic properties of the nucleotides at the critical parts of the pseudoknot VPK. [References: 34]

    See More

External Sources

  1. No sources found.

Library Notes

  1. No notes added.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel