Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 27 results.
User Information
Export Records
  1. 1.   Treatment with a JAK1/2 inhibitor ameliorates murine autoimmune cholangitis induced by IFN overexpression
  2. Shao, Tihong; Leung, Patrick S C; Zhang, Weici; Tsuneyama, Koichi; Ridgway, William M; Young,Howard; Shuai, Zongwen; Ansari, Aftab A; Gershwin, M Eric
  3. Cellular & Molecular Immunology. 2022, Aug 30;
  1. 2.   A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components
  2. Nilsson, Monique B.; Sun, Huiying; Robichaux, Jacqulyne; Pfeifer, Matthias; McDermott, Ultan; Travers, Jon; Diao, Lixia; Xi, Yuanxin; Tong, Pan; Shen, Li; Hofstad, Mia; Kawakami, Masanori; Le, Xiuning; Liu, Xi; Fan, Youhong; Poteete, Alissa; Hu, Limei; Negrao, Marcelo; Tran, Hai; Dmitrovsky, Ethan; Peng, David; Gibbons, Don L.; Wang, Jing; Heymach, John
  3. SCIENCE TRANSLATIONAL MEDICINE. 2020, SEP 2; 12(559): pii: aaz4589.
  1. 3.   How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors
  2. Pogodin, Pavel V; Lagunin, Alexey A; Rudik, Anastasia V; Filimonov, Dmitry A; Druzhilovskiy, Dmitry S; Nicklaus, Marc; Poroikov, Vladimir V
  3. Frontiers in chemistry. 2018, Apr 26; 6: 133.
  1. 4.   Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo [3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple -acting angiokinase inhibition as antitumor agents
  2. Pavana, Roheeth Kumar; Choudhary, Shruti; Bastian, Anja; Ihnat, Michael A.; Bai, Ruoli; Hamel, Ernest; Gangjee, Aleem
  3. BIOORGANIC & MEDICINAL CHEMISTRY. 2017, Jan 15; 25(2): 545-556.
  1. 5.   The importance of Raf dimerization in cell signaling
  2. Freeman, A. K.; Ritt, D. A.; Morrison, D. K.
  3. Small GTPases. 2013, Jul-Sep; 4(3): 180-5.
  1. 7.   X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket
  2. Lountos, G. T.; Jobson, A. G.; Tropea, J. E.; Self, C. R.; Zhang, G. T.; Pommier, Y.; Shoemaker, R. H.; Waugh, D. S.
  3. Febs Letters. 2011, Oct; 585(20): 3245-3249.
  1. 8.   Influence of the dual ABCB1 and ABCG2 inhibitor tariquidar on the disposition of oral imatinib in mice
  2. Gardner, E. R.; Smith, N. F.; Figg, W. D.; Sparreboom, A.
  3. Journal of experimental & clinical cancer research : CR. 2009 28: 99.
  1. 9.   Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras
  2. Lauchle, J. O.; Kim, D.; Le, D. T.; Akagi, K.; Crone, M.; Krisman, K.; Warner, K.; Bonifas, J. M.; Li, Q.; Coakley, K. M.; Diaz-Flores, E.; Gorman, M.; Przybranowski, S.; Tran, M.; Kogan, S. C.; Roose, J. P.; Copeland, N. G.; Jenkins, N. A.
  3. Nature. 2009 461(7262): 411-U110.
  1. 11.   Hematopoiesis and thymic apoptosis are not affected by the loss of Cdk2
  2. Berthet, C.; Rodriguez-Galan, M. C.; Hodge, D. L.; Gooya, J.; Pascal, V.; Young, H. A.; Keller, J.; Bosselut, R.; Kaldis, P.
  3. Molecular and Cellular Biology. 2007, Jul; 27(14): 5079-5089.
  1. 12.   Transgenic expression of human thymidylate synthase accelerates the development of hyperplasia and tumors in the endocrine pancreas
  2. Chen, M.; Rahman, L.; Voeller, D.; Kastanos, E.; Yang, S. X.; Feigenbaum, L.; Allegra, C.; Kaye, F. J.; Steeg, P.; Zajac-Kaye, M.
  3. Oncogene. 2007, Jul; 26(33): 4817-4824.
  1. 13.   Natural products active in aberrant c-Kit signaling
  2. Henrich, C. J.; Goncharova, E. I.; Wilson, J. A.; Gardella, R. S.; Johnson, T. R.; McMahon, J. B.; Takada, K.; Bokesch, H. R.; Gustafson, K. R.
  3. Chemical Biology & Drug Design. 2007, May; 69(5): 321-330.
  1. 14.   Utilization of achiral alkenyl amines for the preparation of high affinity Grb2 SH2 domain-binding macrocycles by ring-closing metathesis
  2. Liu, F.; Worthy, K. M.; Bindu, L.; Giubellino, A.; Bottaro, D. P.; Fisher, R. J.; Burke, T. R.
  3. Organic & Biomolecular Chemistry. 2007 5(2): 367-372.
  1. 15.   Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2
  2. Price, P. M.; Yu, F.; Kaldis, P.; Aleem, E.; Nowak, G.; Safirstein, R. L.; Megyesi, J.
  3. Journal of the American Society of Nephrology. 2006, Sep; 17(9): 2434-2442.
  1. 16.   Homology model of the CDK1/cyclin B complex
  2. McGrath, C. F.; Pattabiraman, N.; Kellogg, G. E.; Lemcke, T.; Kunick, C.; Sausville, E. A.; Zaharevitz, D. W.; Gussio, R.
  3. Journal of Biomolecular Structure & Dynamics. 2005, APR; 22(5): 493-502.
  1. 17.   The search for novel drug leads for predominately antitumor therapies by utilizing mother nature's pharmacophoric libraries
  2. Kingston, D. G. I.; Newman, D. J.
  3. Current Opinion in Drug Discovery & Development. 2005, MAR; 8(2): 207-227.
  1. 18.   Effect of cell cycle inhibition on cisplatin-induced cytotoxicity
  2. Fishel, M. L.; Newell, D. R.; Griffin, R. J.; Davison, R.; Wang, L. Z.; Curtin, N. J.; Zuhowski, E. G.; Kasza, K.; Egorin, M. J.; Moschel, R. C.; Dolan, M. E.
  3. Journal of Pharmacology and Experimental Therapeutics. 2005, JAN; 312(1): 206-213.
  1. 19.   Inhibition of melanoma growth and metastasis by ATF2-derived peptides
  2. Bhoumik, A.; Gangi, L.; Ronai, Z.
  3. Cancer Research. 2004, NOV 15; 64(22): 8222-8230.
  1. 20.   Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation
  2. Lin, Y.; Choksi, S.; Shen, H. M.; Yang, Q. F.; Hur, G. M.; Kim, Y. S.; Tran, J. H.; Nedospasov, S. A.; Liu, Z. G.
  3. Journal of Biological Chemistry. 2004 279(11): 10822-10828.
  1. 21.   A novel macrocyclic tetrapeptide mimetic that exhibits low- picomolar Grb2 SH2 domain-binding affinity
  2. Shi, Z. D.; Lee, K.; Liu, H. P.; Zhang, M. C.; Roberts, L. R.; Worthy, K. M.; Fivash, M. J.; Fisher, R. J.; Yang, D. J.; Burke, T. R.
  3. Biochemical and Biophysical Research Communications. 2003 310(2): 378-383.
  1. 22.   Macrocyclization in the design of Grb2 SH2 domain-binding ligands exhibiting high potency in whole-cell systems
  2. Wei, C. Q.; Gao, Y.; Lee, K.; Guo, R.; Li, B. H.; Zhang, M. C.; Yang, D. J.; Burke, T. R.
  3. Journal of Medicinal Chemistry. 2003 46(2): 244-254.
  1. 23.   Synthesis of a phosphotyrosyl analogue having X-1, X-2 and phi angles constrained to values observed for an SH2 domain-bound phosphotyrosyl residue
  2. Wang, X. Z.; Yao, Z. J.; Liu, H. P.; Zhang, M. C.; Yang, D. J.; George, C.; Burke, T. R.
  3. Tetrahedron. 2003 59(32): 6087-6093.
  1. 24.   Phosphotyrosyl mimetics in the development of signal transduction inhibitors
  2. Burke, T. R.; Lee, K.
  3. Accounts of Chemical Research. 2003 36(6): 426-433.
  1. 25.   Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition
  2. Gussio, R.; Zaharevitz, D. W.; McGrath, C. F.; Pattabiraman, N.; Kellogg, G. E.; Schultz, C.; Link, A.; Kunick, C.; Leost, M.; Meijer, L.; Sausville, E. A.
  3. Anti-Cancer Drug Design. 2000 15(1): 53-66.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel