Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 43 results.
User Information
Export Records
  1. 1.   Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis
  2. Chibaya, Loretah; Karim,Baktiar; Zhang, Hong; Jones,Stephen
  3. Proceedings of the National Academy of Sciences of the United States of America. 2021, Jan 26; 118(4):
  1. 2.   Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain
  2. Magnussen, Helge M.; Ahmed, Syed F.; Sibbet, Gary J.; Hristova, Ventzislava A.; Nomura, Koji; Hock, Andreas K.; Archibald, Lewis J.; Jamieson, Andrew G.; Fushman, David; Vousden, Karen H.; Weissman, Allan M.; Huang, Danny T.
  3. Nature communications. 2020, Apr 29; 11(1):
  1. 3.   DNA intercalator korkormicin A preferentially kills tumor cells expressing wild type p53
  2. Kitagaki, J.; Yang, Y. L.
  3. Biochemical and Biophysical Research Communications. 2011, Oct; 414(1): 186-191.
  1. 4.   The p53 Inhibitor MDM2 Facilitates Sonic Hedgehog-Mediated Tumorigenesis and Influences Cerebellar Foliation
  2. Malek, R.; Matta, J.; Taylor, N.; Perry, M. E.; Mendrysa, S. M.
  3. Plos One. 2011, Mar; 6(3): 13.
  1. 5.   Genomic Analyses of Musashi1 Downstream Targets Show a Strong Association with Cancer-related Processes
  2. Abreu, R. D.; Sanchez-Diaz, P. C.; Vogel, C.; Burns, S. C.; Ko, D. J.; Burton, T. L.; Vo, D. T.; Chennasamudaram, S.; Le, S. Y.; Shapiro, B. A.; Penalva, L.
  3. Journal of Biological Chemistry. 2009 284(18): 12125-12135.
  1. 6.   Structural Basis for p300 Taz2-p53 TAD1 Binding and Modulation by Phosphorylation
  2. Feng, H. Q.; Jenkins, L.; Durell, S. R.; Hayashi, R.; Mazur, S. J.; Cherry, S.; Tropea, J. E.; Miller, M.; Wlodawer, A.; Appella, E.; Bai, Y.
  3. Structure. 2009 17(2): 202-210.
  1. 7.   Two Distinct Motifs within the p53 Transactivation Domain Bind to the Taz2 Domain of p300 and Are Differentially Affected by Phosphorylation
  2. Jenkins, L.; Yamaguchi, H.; Hayashi, R.; Cherry, S.; Tropea, J. E.; Miller, M.; Wlodawer, A.; Appella, E.; Mazur, S. J.
  3. Biochemistry. 2009 48(6): 1244-1255.
  1. 8.   Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example
  2. Tuncbag, N.; Kar, G.; Gursoy, A.; Keskin, O.; Nussinov, R.
  3. Molecular Biosystems. 2009 5(12): 1770-1778.
  1. 9.   Discovery of new pyridoacridine alkaloids from Lissoclinum cf. badium that inhibit the ubiquitin ligase activity of Hdm2 and stabilize p53
  2. Clement, J. A.; Kitagaki, J.; Yang, Y.; Saucedo, C. J.; O'Keefe, B. R.; Weissman, A. M.; Mckee, T. C.; McMahon, J. B.
  3. Bioorganic & Medicinal Chemistry. 2008 16(23): 10022-10028.
  1. 10.   Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2
  2. Kitagaki, J.; Agama, K. K.; Pommier, Y.; Yang, Y. L.; Weissman, A. M.
  3. Molecular Cancer Therapeutics. 2008 7(8): 2445-2454.
  1. 11.   Ablation of TNF or lymphotoxin signaling and the frequency of spontaneous tumors in p53-deficient mice
  2. Kuprash, D. V.; Qin, Z. H.; Ito, D.; Grivennikov, S. I.; Abe, K.; Drutskaya, L. N.; Blankenstein, T.; Nedospasov, S. A.
  3. Cancer Letters. 2008 268(1): 70-75.
  1. 12.   Experimental validation for quantitative protein network models
  2. Nishizuka, S.; Spurrier, B.
  3. Current Opinion in Biotechnology. 2008 19(1): 41-49.
  1. 13.   Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics
  2. Yang, Y. L.; Kitagaki, J.; Dai, R. M.; Tsai, Y. C.; Lorick, K. L.; Ludwig, R. L.; Pierre, S. A.; Jensen, J. P.; Davydov, I. V.; Oberoi, P.; Li, C. C. H.; Kenten, J. H.; Beutler, J. A.; Vousden, K. H.; Weissman, A. M.
  3. Cancer Research. 2007, Oct; 67(19): 9472-9481.
  1. 14.   Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays
  2. Ramalingam, S.; Honkanen, P.; Young, L.; Shimura, T.; Austin, J.; Steeg, P. S.; Nishizuka, S.
  3. Cancer Research. 2007, Jul; 67(13): 6247-6252.
  1. 15.   Reversal of p53 epigenetic silencing in multiple myeloma permits apoptosis by a p53 activator
  2. Hurt, E. M.; Thomas, S. B.; Peng, B.; Farrar, W. L.
  3. Cancer Biology & Therapy. 2006, Sep; 5(9): 1154-1160.
  1. 16.   Tumor suppression and normal aging in mice with constitutively high p53 activity
  2. Mendrysa, S. M.; O'Leary, K. A.; McElwee, M. K.; Michalowski, J.; Eisenman, R. N.; Powell, D. A.; Perry, M. E.
  3. Genes & Development. 2006, JAN 1; 20(1): 16-21.
  1. 17.   A novel RING-type ubiquitin ligase breast cancer-associated gene 2 correlates with outcome in invasive breast cancer
  2. Burger, A. M.; Gao, Y. G.; Amemiya, Y.; Kahn, H. J.; Kitching, R.; Yang, Y. L.; Sun, P.; Narod, S. A.; Hanna, W. M.; Seth, A. K.
  3. Cancer Research. 2005, NOV 15; 65(22): 10401-10412.
  1. 18.   The contribution of the Trp/Met/Phe residues to physical interactions of p53 with cellular proteins
  2. Ma, B. Y.; Pan, Y. P.; Gunasekaran, K.; Keskin, O.; Venkataraghavan, R. B.; Levine, A. J.; Nussinov, R.
  3. Physical Biology. 2005, JUN; 2(2): S56-S66.
  1. 19.   Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells
  2. Yang, Y. L.; Ludwig, R. L.; Jensen, J. P.; Pierre, S. A.; Medaglia, M. V.; Davydov, I. V.; Safiran, Y. J.; Oberoi, P.; Kenten, J. H.; Phillips, A. C.; Weissman, A. M.; Vousden, K. H.
  3. Cancer Cell. 2005, JUN; 7(6): 547-559.
  1. 20.   HDM2 phosphorylation by MAPKAP kinase 2
  2. Weber, H. O.; Ludwig, R. L.; Morrison, D.; Kotlyarov, A.; Gaestel, M.; Vousden, K. H.
  3. Oncogene. 2005, MAR 17; 24(12): 1965-1972.
  1. 21.   Expression and evaluation of RING finger proteins
  2. Yang, Y. L.; Lorick, K. L.; Jensen, J. P.; Weissman, A. M.
  3. Methods in Enzymology. 2005; 398 : 103-112.
  1. 22.   Assay for ubiquitin ligase activity: High-throughput screen for inhibitors of HDM2
  2. Davydov, I. V.; Woods, D.; Safiran, Y. J.; Oberoi, P.; Fearnhead, H. O.; Fang, S.; Jensen, J. P.; Weissman, A. M.; Kenten, J. H.; Vousden, K. H.
  3. Journal of Biomolecular Screening. 2004, DEC; 9(8): 695-703.
  1. 23.   5-Lipoxygenase antagonizes genotoxic stress-induced apoptosis by altering p53 nuclear trafficking
  2. Catalano, A.; Caprari, P.; Soddu, S.; Procopio, A.; Romano, M.
  3. Faseb Journal. 2004, SEP; 18(12): Published online only.
  1. 24.   Mdm2 regulates p53 independently of p19(ARF) in homeostatic tissues
  2. O'Leary, K. A.; Mendrysa, S. M.; Vaccaro, A.; Perry, M. E.
  3. Molecular and Cellular Biology. 2004 24(1): 186-191.
  1. 25.   Regulating the p53 system through ubiquitination
  2. Yang, Y. L.; Li, C. C. H.; Weissman, A. M.
  3. Oncogene. 2004 23(11): 2096-2106.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel