Skip NavigationSkip to Content

NCI at Frederick Scientific Publications Advanced Search

Search
  1. NCI-F Publications

Search
  1. Year Published:

Your search returned 27 results.
User Information
Export Records
  1. 1.   Data imbalance in drug response prediction: multi-objective optimization approach in deep learning setting
  2. Narykov, Oleksandr; Zhu, Yitan; Brettin, Thomas; Evrard,Yvonne; Partin, Alexander; Xia, Fangfang; Shukla, Maulik; Vasanthakumari, Priyanka; Doroshow, James H; Stevens, Rick L
  3. Briefings in Bioinformatics. 2025, Mar 04; 26(2):
  1. 2.   Integration of Computational Docking into Anti-Cancer Drug Response Prediction Models
  2. Narykov, Oleksandr; Zhu, Yitan; Brettin, Thomas; Evrard,Yvonne; Partin, Alexander; Shukla, Maulik; Xia, Fangfang; Clyde, Austin; Vasanthakumari, Priyanka; Doroshow, James H; Stevens, Rick L
  3. Cancers. 2023, Dec 21; 16(1):
  1. 3.   Deep learning-based segmentation of multisite disease in ovarian cancer
  2. Buddenkotte, Thomas; Rundo, Leonardo; Woitek, Ramona; Escudero Sanchez, Lorena; Beer, Lucian; Crispin-Ortuzar, Mireia; Etmann, Christian; Mukherjee, Subhadip; Bura, Vlad; McCague, Cathal; Sahin, Hilal; Pintican, Roxana; Zerunian, Marta; Allajbeu, Iris; Singh, Naveena; Sahdev, Anju; Havrilesky, Laura; Cohn, David E; Bateman, Nicholas W; Conrads, Thomas P; Darcy, Kathleen M; Maxwell, G Larry; Freymann,John; Öktem, Ozan; Brenton, James D; Sala, Evis; Schönlieb, Carola-Bibiane
  3. European Radiology Experimental. 2023, Dec 07; 7(1): 77.
  1. 4.   Proteogenomic insights suggest druggable pathways in endometrial carcinoma
  2. Dou, Yongchao; Katsnelson, Lizabeth; Gritsenko, Marina A; Hu, Yingwei; Reva, Boris; Hong, Runyu; Wang, Yi-Ting; Kolodziejczak, Iga; Lu, Rita Jui-Hsien; Tsai, Chia-Feng; Bu, Wen; Liu, Wenke; Guo, Xiaofang; An, Eunkyung; Arend, Rebecca C; Bavarva, Jasmin; Chen, Lijun; Chu, Rosalie K; Czekanski, Andrzej; Davoli, Teresa; Demicco, Elizabeth G; DeLair, Deborah; Devereaux, Kelly; Dhanasekaran, Saravana M; Dottino, Peter; Dover, Bailee; Fillmore, Thomas L; Foxall, McKenzie; Hermann, Catherine E; Hiltke, Tara; Hostetter, Galen; Jedryka, Marcin; Jewell, Scott D; Johnson, Isabelle; Kahn, Andrea G; Ku, Amy T; Kumar-Sinha, Chandan; Kurzawa, Pawel; Lazar, Alexander J; Lazcano, Rossana; Lei, Jonathan T; Li, Yi; Liao, Yuxing; Lih, Tung-Shing M; Lin, Tai-Tu; Martignetti, John A; Masand, Ramya P; Matkowski, Rafal; McKerrow, Wilson; Mesri, Mehdi; Monroe, Matthew E; Moon, Jamie; Moore, Ronald J; Nestor, Michael D; Newton, Chelsea; Omelchenko, Tatiana; Omenn, Gilbert S; Payne, Samuel H; Petyuk, Vladislav A; Robles, Ana I; Rodriguez, Henry; Ruggles, Kelly V; Rykunov, Dmitry; Savage, Sara R; Schepmoes, Athena A; Shi, Tujin; Shi, Zhiao; Tan, Jimin; Taylor, Mason; Thiagarajan,Mathangi; Wang, Joshua M; Weitz, Karl K; Wen, Bo; Williams, C M; Wu, Yige; Wyczalkowski, Matthew A; Yi, Xinpei; Zhang, Xu; Zhao, Rui; Mutch, David; Chinnaiyan, Arul M; Smith, Richard D; Nesvizhskii, Alexey I; Wang, Pei; Wiznerowicz, Maciej; Ding, Li; Mani, D R; Zhang, Hui; Anderson, Matthew L; Rodland, Karin D; Zhang, Bing; Liu, Tao; Fenyö, David
  3. Cancer Cell. 2023, Sep 11; 41(9): 1586-1605.e15.
  1. 5.   AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for monkeypox virus
  2. Patel,Chiragkumar; Mall, Raghvendra; Bensmail, Halima
  3. Journal of Infection and Public Health. 2023, Mar 15; 16(5): 799-807.
  1. 6.   Deep-Learning-Based Whole-Lung and Lung-Lesion Quantification Despite Inconsistent Ground Truth: Application to Computerized Tomography in SARS-CoV-2 Nonhuman Primate Models
  2. Reza, Syed M S; Chu, Winston T; Homayounieh, Fatemeh; Blain, Maxim; Firouzabadi, Fatemeh D; Anari, Pouria Y; Lee, Ji Hyun; Worwa, Gabriella; Finch, Courtney L; Kuhn, Jens H; Malayeri, Ashkan; Crozier,Ian; Wood, Bradford J; Feuerstein, Irwin M; Solomon,Jeffrey
  3. Academic Radiology. 2023, Feb 27;
  1. 7.   Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
  2. Xu, Junlin; Xu, Jielin; Meng, Yajie; Lu, Changcheng; Cai, Lijun; Zeng, Xiangxiang; Nussinov,Ruth; Cheng, Feixiong
  3. Cell Reports Methods. 2023, Jan 23; 3(1): 100382.
  1. 9.   QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
  2. Mehta, Raghav; Filos, Angelos; Baid, Ujjwal; Sako, Chiharu; McKinley, Richard; Rebsamen, Michael; Dätwyler, Katrin; Meier, Raphael; Radojewski, Piotr; Murugesan, Gowtham Krishnan; Nalawade, Sahil; Ganesh, Chandan; Wagner, Ben; Yu, Fang F; Fei, Baowei; Madhuranthakam, Ananth J; Maldjian, Joseph A; Daza, Laura; Gómez, Catalina; Arbeláez, Pablo; Dai, Chengliang; Wang, Shuo; Reynaud, Hadrien; Mo, Yuanhan; Angelini, Elsa; Guo, Yike; Bai, Wenjia; Banerjee, Subhashis; Pei, Linmin; Ak, Murat; Rosas-González, Sarahi; Zemmoura, Ilyess; Tauber, Clovis; Vu, Minh H; Nyholm, Tufve; Löfstedt, Tommy; Ballestar, Laura Mora; Vilaplana, Veronica; McHugh, Hugh; Maso Talou, Gonzalo; Wang, Alan; Patel, Jay; Chang, Ken; Hoebel, Katharina; Gidwani, Mishka; Arun, Nishanth; Gupta, Sharut; Aggarwal, Mehak; Singh, Praveer; Gerstner, Elizabeth R; Kalpathy-Cramer, Jayashree; Boutry, Nicolas; Huard, Alexis; Vidyaratne, Lasitha; Rahman, Md Monibor; Iftekharuddin, Khan M; Chazalon, Joseph; Puybareau, Elodie; Tochon, Guillaume; Ma, Jun; Cabezas, Mariano; Llado, Xavier; Oliver, Arnau; Valencia, Liliana; Valverde, Sergi; Amian, Mehdi; Soltaninejad, Mohammadreza; Myronenko, Andriy; Hatamizadeh, Ali; Feng, Xue; Dou, Quan; Tustison, Nicholas; Meyer, Craig; Shah, Nisarg A; Talbar, Sanjay; Weber, Marc-André; Mahajan, Abhishek; Jakab, Andras; Wiest, Roland; Fathallah-Shaykh, Hassan M; Nazeri, Arash; Milchenko, Mikhail; Marcus, Daniel; Kotrotsou, Aikaterini; Colen, Rivka; Freymann,John; Kirby,Justin; Davatzikos, Christos; Menze, Bjoern; Bakas, Spyridon; Gal, Yarin; Arbel, Tal
  3. The journal of Machine Learning for Biomedical Imaging. 2022, Aug; 2022
  1. 10.   QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
  2. Mehta, Raghav; Filos, Angelos; Baid, Ujjwal; Sako, Chiharu; McKinley, Richard; Rebsamen, Michael; Dätwyler, Katrin; Meier, Raphael; Radojewski, Piotr; Murugesan, Gowtham Krishnan; Nalawade, Sahil; Ganesh, Chandan; Wagner, Ben; Yu, Fang F; Fei, Baowei; Madhuranthakam, Ananth J; Maldjian, Joseph A; Daza, Laura; Gómez, Catalina; Arbeláez, Pablo; Dai, Chengliang; Wang, Shuo; Reynaud, Hadrien; Mo, Yuanhan; Angelini, Elsa; Guo, Yike; Bai, Wenjia; Banerjee, Subhashis; Pei, Linmin; Ak, Murat; Rosas-González, Sarahi; Zemmoura, Ilyess; Tauber, Clovis; Vu, Minh H; Nyholm, Tufve; Löfstedt, Tommy; Ballestar, Laura Mora; Vilaplana, Veronica; McHugh, Hugh; Maso Talou, Gonzalo; Wang, Alan; Patel, Jay; Chang, Ken; Hoebel, Katharina; Gidwani, Mishka; Arun, Nishanth; Gupta, Sharut; Aggarwal, Mehak; Singh, Praveer; Gerstner, Elizabeth R; Kalpathy-Cramer, Jayashree; Boutry, Nicolas; Huard, Alexis; Vidyaratne, Lasitha; Rahman, Md Monibor; Iftekharuddin, Khan M; Chazalon, Joseph; Puybareau, Elodie; Tochon, Guillaume; Ma, Jun; Cabezas, Mariano; Llado, Xavier; Oliver, Arnau; Valencia, Liliana; Valverde, Sergi; Amian, Mehdi; Soltaninejad, Mohammadreza; Myronenko, Andriy; Hatamizadeh, Ali; Feng, Xue; Dou, Quan; Tustison, Nicholas; Meyer, Craig; Shah, Nisarg A; Talbar, Sanjay; Weber, Marc-André; Mahajan, Abhishek; Jakab, Andras; Wiest, Roland; Fathallah-Shaykh, Hassan M; Nazeri, Arash; Milchenko, Mikhail; Marcus, Daniel; Kotrotsou, Aikaterini; Colen, Rivka; Freymann,John; Kirby,Justin; Davatzikos, Christos; Menze, Bjoern; Bakas, Spyridon; Gal, Yarin; Arbel, Tal
  3. The Journal of Machine Learning for Biomedical Imaging. 2022, Aug; 2022
  1. 11.   BETA: a comprehensive benchmark for computational drug-target prediction
  2. Zong, Nansu; Li,Ning; Wen, Andrew; Ngo, Victoria; Yu, Yue; Huang, Ming; Chowdhury, Shaika; Jiang, Chao; Fu, Sunyang; Weinshilboum, Richard; Jiang, Guoqian; Hunter, Lawrence; Liu, Hongfang
  3. Briefings in Bioinformatics. 2022, Jun 02;
  1. 12.   A cross-study analysis of drug response prediction in cancer cell lines
  2. Xia, Fangfang; Allen, Jonathan; Balaprakash, Prasanna; Brettin, Thomas; Garcia-Cardona, Cristina; Clyde, Austin; Cohn, Judith; Doroshow,Jim; Duan, Xiaotian; Dubinkina, Veronika; Evrard,Yvonne; Fan, Ya Ju; Gans, Jason; He, Stewart; Lu,Pinyi; Maslov, Sergei; Partin, Alexander; Shukla, Maulik; Stahlberg,Eric; Wozniak, Justin M; Yoo, Hyunseung; Zaki,George; Zhu, Yitan; Stevens, Rick
  3. Briefings in Bioinformatics. 2021, Sep 14;
  1. 13.   Federated learning improves site performance in multicenter deep learning without data sharing
  2. Sarma, Karthik; Harmon,Stephanie; Sanford, Thomas; Roth, Holger R.; Xu, Ziyue; Tetreault, Jesse; Xu, Daguang; Flores, Mona G.; Raman, Alex G.; Kulkarni, Rushikesh; Wood, Bradford J.; Choyke, Peter L.; Priester, Alan M.; Marks, Leonard S.; Raman, Steven S.; Enzmann, Dieter; Turkbey, Baris; Speier, William; Arnold, Corey W.
  3. Journal of the American Medical Informatics Association : JAMIA. 2021, Jun 12; 28(6): 1259-1264.
  1. 14.   Learning curves for drug response prediction in cancer cell lines
  2. Partin, Alexander; Brettin, Thomas; Evrard,Yvonne; Zhu, Yitan; Yoo, Hyunseung; Xia, Fangfang; Jiang, Songhao; Clyde, Austin; Shukla, Maulik; Fonstein, Michael; Doroshow, James H.; Stevens, Rick L.
  3. BMC bioinformatics. 2021, May 17; 22(1):
  1. 15.   Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images-The ACDC@LungHP Challenge 2019
  2. Li, Zhang; Zhang, Jiehua; Tan, Tao; Teng, Xichao; Sun, Xiaoliang; Zhao, Hong; Liu, Lihong; Xiao, Yang; Lee, Byungjae; Li, Yilong; Zhang, Qianni; Sun, Shujiao; Zheng, Yushan; Yan, Junyu; Li, Ni; Hong, Yiyu; Ko, Junsu; Jung,Hyun; Liu,Yanling; Chen, Yu-cheng; Wang, Ching-wei; Yurovskiy, Vladimir; Maevskikh, Pavel; Khanagha, Vahid; Jiang, Yi; Yu, Li; Liu, Zhihong; Li, Daiqiang; Schueffler, Peter J.; Yu, Qifeng; Chen, Hui; Tang, Yuling; Litjens, Geert
  3. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. 2021, Feb; 25(2): 429-440.
  1. 16.   A Deep Learning Pipeline for Nucleus Segmentation
  2. Zaki,George; Gudla, Prabhakar R; Lee, Kyunghun; Kim, Justin; Ozbun, Laurent; Shachar, Sigal; Gadkari, Manasi; Sun, Jing; Fraser, Iain D C; Franco, Luis M; Misteli, Tom; Pegoraro, Gianluca
  3. CYTOMETRY PART A. 2020, NOV 19;
  1. 17.   Deep Learning for Automated Liver Segmentation to Aid in the Study of Infectious Diseases in Nonhuman Primates
  2. Reza, Syed M S; Bradley, Dara; Aiosa, Nina; Castro, Marcelo; Lee, Ji Hyun; Lee, Byeong-Yeul; Bennett, Richard S; Hensley, Lisa E; Cong, Yu; Johnson, Reed; Hammoud, Dima; Feuerstein, Irwin; Solomon,Jeffrey
  3. Academic radiology. 2020, Nov; 28(Supplement 1): pii: S1076-6332(20)30504-3.
  1. 18.   Generalizing Deep Learning for Medical Image Segmentation to Unseen Domains via Deep Stacked Transformation
  2. Zhang, Ling; Wang, Xiaosong; Yang, Dong; Sanford, Thomas; Harmon,Stephanie; Turkbey, Baris; Wood, Bradford J.; Roth, Holger; Myronenko, Andriy; Xu, Daguang; Xu, Ziyue
  3. IEEE TRANSACTIONS ON MEDICAL IMAGING. 2020, JUL; 39(7): 2531-2540.
  1. 19.   Predicting RNA SHAPE scores with deep learning
  2. Bliss, Noah; Bindewald,Eckart; Shapiro,Bruce
  3. RNA biology. 2020, JUN 1; 1-7.
  1. 20.   Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study
  2. Sanford, Thomas; Harmon,Stephanie; Turkbey, Evrim B; Kesani, Deepak; Tuncer, Sena; Madariaga, Manuel; Yang, Chris; Sackett, Jonathan; Mehralivand, Sherif; Yan, Pingkun; Xu, Sheng; Wood, Bradford J; Merino, Maria J; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris
  3. Journal of magnetic resonance imaging : JMRI. 2020, Jun 01;
  1. 21.   Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology
  2. Turner, Oliver C; Aeffner, Famke; Bangari, Dinesh S; High, Wanda; Knight, Brian; Forest, Tom; Cossic, Brieuc; Himmel, Lauren E; Rudmann, Daniel G; Bawa, Bhupinder; Muthuswamy, Anantharaman; Aina, Olulanu H; Edmondson,Elijah; Saravanan, Chandrassegar; Brown, Danielle L; Sing, Tobias; Sebastian, Manu M
  3. Toxicologic pathology. 2019, Oct 23; 192623319881401.
  1. 22.   AI Meets Exascale Computing: Advancing Cancer Research With Large-Scale High Performance Computing
  2. Bhattacharya, Tanmoy; Brettin, Thomas; Doroshow, James H.; Evrard,Yvonne; Greenspan, Emily J.; Gryshuk, Amy L.; Hoang, Thuc T.; Lauzon, Carolyn B. Vea; Nissley,Dwight; Penberthy, Lynne; Stahlberg,Eric; Stevens, Rick; Streitz, Fred; Tourassi, Georgia; Xia, Fangfang; Zaki,George
  3. Frontiers in oncology. 2019, Oct 2; 9
  1. 23.   Predicting tumor cell line response to drug pairs with deep learning
  2. Xia, Fangfang; Shukla, Maulik; Brettin, Thomas; Garcia-Cardona, Cristina; Cohn, Judith; Allen, Jonathan E.; Maslov, Sergei; Holbeck, Susan L.; Doroshow, Jim; Evrard, Yvonne; Stahlberg, Eric; Stevens, Rick L.
  3. BMC bioinformatics. 2018, Dec 21; 19(Supp 18):
  1. 24.   Integration of Deep Learning and Graph Theory for Analyzing Histopathology Whole-slide Images
  2. Jung,Hyun; Suloway,Christian; Miao,Tianyi; Edmondson,Elijah; Morcock,David; Deleage,Claire; Liu,Yanling; Collins,Jack; Lisle, Curtis
  3. 2018 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR). 2018, OCT 09-11;
  1. 25.   TULIP: An RNA-seq-based Primary Tumor Type Prediction Tool Using Convolutional Neural Networks
  2. Jones,Sara; Beyers,Matt; Shukla, Maulik; Xia, Fangfang; Brettin, Thomas; Stevens, Rick; Weil, M Ryan; Ranganathan Ganakammal,Satishkumar
  3. Cancer Informatics. 2022 21: 11769351221139491.
NCI at Frederick

You are leaving a government website.

This external link provides additional information that is consistent with the intended purpose of this site. The government cannot attest to the accuracy of a non-federal site.

Linking to a non-federal site does not constitute an endorsement by this institution or any of its employees of the sponsors or the information and products presented on the site. You will be subject to the destination site's privacy policy when you follow the link.

ContinueCancel