Skip to main content

Science & Technology

(Updated) Nanotechnology: Understanding the Tiny Particles That May Save a Life

Could nanotechnology—the study of tiny matter ranging in size from 1 to 200 nanometers—be the future of cancer treatment? Although it is a relatively new field in cancer research, nanotechnology is not new to everyday life. Have you ever thought about the tennis ball you’ve thrown with your dog at the park and wondered what it is made of? Nanotechnology is used to make the tennis ball stronger.

(Updated) NCI Fiscal 2016 Bypass Budget Proposes $25 Million for Frederick National Lab

The additional funding requested for Frederick National Laboratory for Cancer Research (FNLCR) in the Fiscal 2016 Bypass Budget was $25 million, or approximately 3.5 percent of the total additional funding request of $715 million.

FDA Approves Immunotherapy for a Cancer that Affects Infants and Children

The U.S. Food and Drug Administration (FDA) recently approved dinutuximab (ch14.18) as an immunotherapy for neuroblastoma, a rare type of childhood cancer that offers poor prognosis for about half of the children who are affected. The National Cancer Institute’s (NCI) Biopharmaceutical Development Program (BDP) at the Frederick National Laboratory for Cancer Research produced ch14.18 for the NCI-sponsored clinical trials that proved the drug’s effectiveness against the disease.

Frederick National Lab and the Pancreatic Cancer Action Network Award Fellowships for KRAS Research

The Frederick National Laboratory for Cancer Research recently formed a partnership with the Pancreatic Cancer Action Network (PanCAN) to award a one-year fellowship to two scientists whose research will help lead to new therapies for pancreatic cancer. The scientists will focus on KRAS, a gene in the RAS family that is mutated in 95 percent of pancreatic cancers, according to the National Cancer Institute.

A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression

Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS through a specific cascade of proteins, as reported in a recent article in Molecular and Cellular Biology by Jacqueline Salotti, Ph.D., and colleagues in the Eukaryotic Transcriptional Regulation Section of the Mouse Cancer Genetics Program, Center for Cancer Research.